AD 0729009

DEPARTMENT OF THE NAVY NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER

Washington, D.C. 20034

A METHOD FOR PREDICTING THE STATIC AERODYNAMIC CHARACTERISTICS OF TYPICAL MISSILE CONFIGURATIONS FOR ANGLES OF ATTACK TO 180 DEGREES

Bernard F. Saffell, Jr.
Millard L. Howard
and
Eugene N. Brooks, Jr.

Approved for public release; distribution unlimited

AVIATION AND SURFACE EFFECTS DEPARTMENT

Research and Development Report

March 1971

Report 3645
Aero Report 1168

SUMMARY

A method for predicting the static, longitudinal aerodynamic characteristics of typical missile configurations at zero roll angle (i.e., in a plus configuration) has been developed and programmed for use on the IBM 7090 digital computer. It can be applied throughout the subsonic, transonic, and supersonic speed regimes to slender bodies of revolution or to nose-cylinder body combinations with low aspect-ratio lifting surfaces. The aerodynamic characteristics can be computed for missile configurations operating at angles of attack up to 180 degrees. The effect of control surface deflections for all modes of aerodynamic control are taken into account by this method. The method is based on well-known linear, nonlinear crossflow and slender body theories with empirical modifications to provide the high angle of attack capability. Comparisons of the theory with experimental data are presented to demonstrate the accuracy of the method.

TABLE OF CONTENTS

		Page
INTRODUCTIO	NC	1
LIFT CHARAC	CTERISTICS	2
DRAG CHARAC	CTERISTICS	8
PITCHING MO	DMENT CHARACTERISTICS	17
COMPUTER PI	ROGRAM DESCRIPTION	21
COMPARISON	OF THEORY WITH EXPERIMENTAL DATA	22
CONCLUSIONS	5	23
REFERENCES	***************************************	24
	LIST OF FIGURES	
Figure 1 -	Typical Missile Configurations	26
Figure 2	General Geometric Characteristics	27
Figure 3 -	Parameters Used to Compute Body Normal Force and Pitching Moment (from Reference 3)	28
Figure 4 -	Crossflow Drag Coefficient as a Function of Mach Number (from Reference 3)	29
Figure 5 -	Linear Lift Interference Factors (from Reference 7)	30
Figure 6 -	Lift Curve Slope for Wings and Tails (from Reference 8)	33
Figure 7 -	Crossflow Drag Coefficient for Wings and Tails as a Function of Aspect Ratio and Taper Ratio	35
Figure 8 -	Vortex Model Used to Determine the Lift Loss Due to Downwash (from Reference 1)	36
Figure 9 -	Incompressible Skin Friction Coefficient (from Reference 9)	37
Figure 10 =	Compressibility Effect on Turbulent Skin Friction (from Reference 9)	38
Figure 11 -	Transonic Wave Drag for Ogival and Blunted Conical Forebodies	39
Figure 12 -	External Wave Drag of Blunt Forebodies (from Reference 11)	40
Figure 13 -	Transonic Zero-Lift Wing Wave Drag for Unswept Wings (from Reference 9)	41
Figure 14 -	Ratio of Wave Drag for Noses of Various Fineness Ratios to the Wave Drag for a Hemispherical Nose	42
Figure 15 -	Wave Drag of a Pointed Conical Nose (from Reference 6)	Jıз

Figure 16 - Drag Coefficient for a Flat Plate Normal to	44
Figure 17 - Lifting Surface Center of Pressure as a Function of Effective Aspect Ratio (from Reference 1)	45
Figure 18 - Subsonic Center of Pressure Location of Lift on the Body in the Pressure of Wings or Tails (from Reference 1)	47
Figure 19 - Supersonic Center of Pressure Location of Lift on the Body in the Pressure of Wings or Tails for β AR (1 + λ) (1 + 1	49
Figure 20 - Supersonic Center of Pressure Location of Lift on the Body in the Presence of Wings or Tails for $\beta AR (1 + \lambda) \left(1 + \frac{1}{m\beta}\right) > 4.0$. (from Reference 1).	51
Figure 21 - Missile Axis Systems	52
Figure 22 - Configurations Used to Compare Theory with Experiment	53
Figure 23 - Comparison of Experimental Data with Theoretical Results for Configuration 1	54
Figure 24 - Comparison of Experimental Data with Theoretical Results for Configuration 2	58
Figure 25 - Comparison of Experimental Data with Theoretical Results for Configuration 3	62
Figure 26 - Comparison of Experimental Data with Theoretical Results for Configuration 4	64
LIST OF TABLES	
Table 1 - Computer Program Listing	65
Table 2 - Input Nomenclature	84
Table 3 - Program Input Format	87
Table 4 - Output Nomenclature	88

AR	exposed aspect ratio
Ъ	semispan of an aerodynamic surface including the body radius, feet
c_{D}	total drag coefficient
$^{\mathrm{C}}_{\mathrm{D}_{\mathrm{b}}}$	base drag coefficient
C _D c	crossflow drag coefficient
C _D f	friction drag coefficient
c _D i	induced drag coefficient
C _D	total zero-lift drag coefficient
c_{D_P}	pressure drag coefficient
c _{Dv}	wave drag coefficient
C _f	incompressible skin-friction coefficient
C _f c	compressible skin-friction coefficient
C _{D_{FP}}	drag of a flat plate normal to the flow
c^{Γ}	total lift coefficient
$^{\mathrm{C}}_{\mathrm{L}_{lpha}}$	lift curve slope, per radian
C _m	total longitudinal pitching moment coefficient
C _r	root-chord of an aerodynamic surface, feet
C _t	tip-chord of an aerodynamic surface, feet
đ	diameter of the body at any station, feet
$^{\mathrm{d}}\mathrm{_{B}}$	base diameter of the body, feet
d_{N}	diameter of the nose at the nose-body juncture, feet
f	spanwise location of the vortex which emanates from the forward surface, feet
h _A	height of the trailing vortex above the body centerline at the aft surface center of pressure, feet
i	downwash interference constant

(continued)

$(k_2 - k_1)$	apparent mass factor
K	linear lift interference factor due to angle of attack
K '	linear lift interference factor due to control surface deflection
1 _B	total length of the body, feet
1 _N	length of the nose, feet
$1_{ ext{REF}}$	arbitrary reference length, usually the maximum body diameter, feet
1_{T}	distance from the tip of the nose to the intersection of the tail leading edge with the body, feet
1 _W	distance from the tip of the nose to the intersection of the wing leading edge with the body, feet
M	free-stream Mach number
m	cotangent of the leading edge sweep angle
r	radius of the body at any station, feet
Re	Reynolds number
S _B	base area of the body, $(feet)^2$
$s_{ m F}$	exposed planform area of one pair of forward lifting surfaces, (feet) ²
$s_{_{ m N}}$	body cross-sectional area at the nose, body juncture, $(feet)^2$
$\mathtt{S}_{\mathtt{P}}$	planform area of the body, $(feet)^2$
Ss	surface area of the body, (feet)2
\mathtt{S}_{T}	exposed planform area of one pair of tail surfaces, $(feet)^2$
s _T !	planform area of one pair of tail surfaces as obtained by extending the leading and trailing edges to the center-line of the body, (feet) ² . See Figure 2.

(continued)

s _w	exposed planform area of one pair of wings, (feet)2
s _w '	planform area of one pair of wings as obtained by extending the leading and trailing edges to the center-line of the body, (feet)2. See Figure 2.
v_B	volume of the body, (feet) ³
x _{CG}	distance from the nose to the missile center of gravity, $(\text{feet})^2$
X	distance to the surface center of pressure as measured from the intersection of the leading edge of the aerodynamic surface with the body, feet
X _{CP}	distance from the nose to the center of pressure location, feet
X _h	distance from the intersection of the panel leading edge and the body to the hinge line, feet
X _p	distance from the nose to the centroid of the body plan- form area, feet
α	missile angle of attack, degrees
ß	compressibility factor, $\sqrt{M^2-1}$
δ	<pre>control surface deflection, degrees (See Figure 1 for sign conventions)</pre>
∇^D	component of the induced drag coefficient
$\Delta C_{D_{\mathcal{O}}}$	increment of wave drag for the transonic speed regime
n	ratio of the drag coefficient of a circular cylinder of finite length to that of infinite length
$\Theta_{\mathbf{N}}$	conical nose semi-vortex angle, degrees
1	lifting surface taper ratio, C _t /C _r
Λ	leading edge sweep angle, degrees
Λ _{c/4}	sweep angle of the quarter chord line, degrees

(continued)

SUBSCRIPTS

A	aft lifting surface, alone
В	body alone
BT	body in the presence of the tail
BT - α	body in the presence of the tail due to angle of attack
BT - δ	body in the presence of the tail due to control surface deflection
BW	body in the presence of the wing
BW - α	body in the presence of the wing due to angle of attack
F	forward surface alone
FB	forward surface in the presence of the body
N	nose
T	tail alone
Τ - α	tail alone due to angle of attack
Τ - δ	tail alone due to control surface deflection
TB	tail in the presence of the body
TB - α	tail in the presence of the body due to angle of attack
ТВ - δ	tail in the presence of the body due to control surface deflection
TV .	tail, nonlinear component
W	wing alone
MB	wing in the presence of the body
WB - α	wing in the presence of the body due to angle of attack
wv	wing, nonlinear component

The control surface is defined as the tail regardless of the mode of control; the fixed surface is defined as the wing (see Figure 1).

INTRODUCTION

Increasing maneuverability requirements of missiles indicated a need for predicting the aerodynamic characteristics, including lift, drag, and pitching moment, of missile configurations to angles of attack of 90 degrees and higher. A study showed that existing methods for computing these aerodynamic characteristics are based on a number of different theories all of which are applicable only to small angles of attack. To fulfill the high angle of attack requirements, a method for determining the aerodynamic characteristics of low aspect-ratio configurations at zero roll angles operating at angles of attack up to 180 degrees has been developed. The method is applicable throughout the subsonic, transonic, and supersonic speed regimes up to $\beta AR \approx 10.0$, and accounts for control surface deflections.

The method is composed of well-known linear, nonlinear crossflow, and slender body theories which have been modified to provide the required high angle of attack capability. These theories can be applied to slender bodies of revolution or nose-cylinder bodies with canard, wing, or tail controls (Figure 1).

This report describes the methods developed and the computer program which has been written for use on the IBM 7090 digital computer. The description of the method is divided into three parts: lift, drag, and pitching moment. For the sake of clarity, the description of the method is kept to a minimum, without lengthy justification and description of the techniques employed. The reader is referred to the references for detailed descriptions of the various theories. The description of the computer program consists of a brief discussion of the main program and subroutines and complete instructions required for use of the program. Comparisons of theoretical results with experimental data are presented for angles of attack up to 90 degrees over the entire speed range to demonstrate the accuracy of the theories. Some data for a missile configuration at 180 degrees angle of attack is available and is compared with the theoretical results.

LIFT CHARACTERISTICS

The total lift on the missile is the sum of the body lift, the lift due to the aerodynamic surfaces, and the interference lift between the forward and aft surfaces. The lift on the body and aerodynamic surfaces is composed of two components: linear lift including the effects of the body-lifting surface interaction and nonlinear crossflow lift. In general, the crossflow lift component is caused by flow separation which occurs at angle of attack, while the interference component is the liftloss on the aft lifting surface due to downwash from the forward surface (Reference 1).

Allen, References 2 and 3, developed a method for predicting the total lift on bodies of revolution at angles of attack. This method includes the linear or potential flow component and two nonlinear components: the viscous crossflow force and the viscous axial force. Because the contribution of the axial force component to the body lift is small, it is usually neglected. Allen's expression for the body lift is

$$C_{L_{B}} = (k_{2} - k_{1}) \left(\frac{S_{B}}{S_{REF}}\right) \sin 2\alpha \cos \frac{\alpha}{2} + \eta C_{dc} \left(\frac{S_{p}}{S_{REF}}\right) \sin^{2}\alpha \cos \alpha - C_{D_{O_{B}}} \cos^{2}\alpha \sin \alpha$$
(1)

where the first term is the linear contribution and the second term is the nonlinear contribution. The apparent mass factor, $k_2 - k_1$, and the drag ratio, η , can be obtained from Figure 3, while the crossflow drag coefficient, $C_{\rm dc}$, is obtained from Figure 4. Comparisons of theory with experimental data for numerous bodies of revolution over a wide range of Mach numbers and angles of attack are presented in Reference 3. It should be noted that although this expression for the lift is independent of the nose shape, good agreement with experiment is indicated in Reference 4 for a body with an unusual shape.

The linear lift characteristics of low aspect-ratio lifting surfaces whose cross-sections are thin and symmetrical are generally a function of speed, planform area, and aspect-ratio. When the diameter of the missile body is of the same order of magnitude as the span of the

lifting surfaces, the effects of body-wing and body-tail interactions are significant. Hence, the linear lift of the aerodynamic surfaces is composed of two components: the lift on the surface in the presence of the body, and the added lift on the body due to the presence of a surface. Most low aspect-ratio missile configurations exhibit a nonlinear dependence of lift on angle of attack, especially at the higher angles. One primary cause of this is the crossflow lift component which is due to lateral flow separation and the formation of free vortices on the upper surface. This nonlinear dependence is analyzed in References 1 and 5 and summarized by Eaton in Reference 6.

The expression for the total wing lift based on an arbitrary reference area is

$$C_{L_{W}} = C_{L_{WB-\alpha}} + C_{L_{BW-\alpha}} + C_{L_{WV}}$$
(2)

In order to provide high angle of attack capability, it is necessary to modify both the linear and nonlinear theories. The lift on the wing in the presence of the body, as presented in Reference 2, is a linear function of angle of attack and can be expressed as

$$C_{L_{WB-\alpha}} = K_{WB} C_{L_{\alpha_W}} \left(\frac{S_W}{S_{REF}} \right)^{\alpha}$$
(3)

Since the lift force does not vary linearly with angle of attack at high angles, Equation (3) is modified such that the linear lift becomes a function of $\sin \alpha$ as shown below

$$C_{L_{WB-\alpha}} = K_{WB} C_{L_{\alpha_{W}}} \left(\frac{S_{W}}{S_{REF}}\right) \sin \alpha$$
 (4)

This component of the linear lift is modified further to satisfy the end condition of zero lift at 90 degrees angle of attack. The resulting expression for the linear wing lift in the pressure of a body is

$$C_{L_{WB-\alpha}} = K_{WB} C_{L_{\alpha_{W}}} \left(\frac{S_{W}}{S_{REF}} \right) \sin \alpha \cos \alpha$$
 (5)

It is important to note that for small angles of attack the modified theory should be very close to the method of Reference 1 since $\sin \alpha \alpha$ and $\cos \alpha 1$. Similarly, the additional lift on the body due to the presence of the wing is

$$C_{L_{BW-\alpha}} = K_{BW} C_{L_{\alpha_W}} \left(\frac{S_W}{S_{REF}} \right) \quad \sin \alpha \cos \alpha$$
 (6)

The parameters, K_{WB} and K_{BW} , are determined from Figure 5. C_L is obtained from Figure 6 by multiplying C_L by the aspect-ratio

if AR < 1.0. When the aspect ratio is greater than one, the lift-curve slope is obtained from the following equation

$$C_{I_{\alpha_{W}}} = \left(\frac{1}{AR^{(AR-1)/AR}}\right) \left(\frac{C_{L_{\alpha_{W}}}}{AR}\right) AR$$
 (7)

where $\begin{pmatrix} c_L \\ \alpha_W \end{pmatrix}$ is obtained from Figure 6. The first term of Equation (7)

is an empirical modification of the lift curve slope for a lifting surface with aspect-ratio greater than 1.

The nonlinear wing lift from Reference 6 is

$$C_{L_{WV}} = C_{dc} \sin^2 \alpha \left(\frac{S_{\dot{W}}}{S_{REF}} \right)$$
 (8)

This expression is modified to satisfy the aforementioned end condition with the result being

$$C_{L_{WV}} = C_{de} \sin^2 \alpha \left(\frac{S_W}{S_{REF}} \right) \cos \alpha$$
 (9)

where C_{dc} is obtained from Figure 7. It should be noted that the cross-flow drag coefficient is not appreciably affected by Mach number, (References 6 and 7); hence, C_{dc} is presented independent of Mach number.

The total tail lift is computed basically the same as the wing lift except for the lift due to deflection of the control surfaces. The tail lift is expressed as

$$c_{L_{T}} = c_{L_{TB-\alpha}} + c_{L_{BT-\alpha}} + c_{L_{TB-\delta}} + c_{L_{BT-\delta}} + c_{L_{TV}}$$
(10)

where $C_{L_{TB-\alpha}}$ and $C_{L_{BT-\alpha}}$ are obtained by applying Equations (5) and (6) to the tail surface. The other three components are:

$$C_{L_{TB-\delta}} = K_{TB} \quad C_{L_{\alpha_T}} \sin \delta \left(\frac{S_T}{S_{REF}} \right) \cos(\alpha + \delta)$$
 (11)

$${}^{C}L_{BT-\delta} = {}^{K}_{BT} \quad {}^{C}L_{\alpha_{T}} \sin \delta \left(\frac{S_{T}}{S_{TEF}} \right) \cos(\alpha + \delta)$$
(12)

$$C_{L_{TV}} = C_{dc} \sin^{2}(\alpha + \delta) \left(\frac{S_{T}}{S_{REF}}\right) \cos(\alpha + \delta)$$
 (13)

The parameters, $\rm K_{BT}^{}$ and $\rm K_{TB}^{}$, are obtained from Figure 5, while $\rm C_{dc}^{}$ and $\rm C_{L}^{}$ are obtained as specified for the wing. Notice that the nonlinear $\rm \alpha_{T}^{}$

lift is based on the local angle of attack, $(\alpha + \delta)$, of the control surface.

The lift-loss on the aft surface due to downwash from the forward surface is obtained from the method presented in Reference 1 and discussed in Reference 7. Since the method for computing this component of the total lift on the missile is both complex and lengthy, only the equations necessary to compute the lift-loss are presented. The reader is referred to Reference 1 for a detailed discussion of the assumptions and technique used in deriving the method. It is noted that the nomenclature used to describe the lifting surfaces is changed from wing and tail to forward and aft surfaces. This is necessary because the control surface, whether it be wing, canard, or tail type of control, is designated the tail and because the aft surface, regardless of the mode of control, is the one which is affected by downwash.

This method is valid for the entire speed range. The lift-loss due to downwash is

$$C_{L_{i}} = \frac{C_{L_{\alpha_{F}}} C_{L_{\alpha_{A}}} \left[K_{FB} \sin \alpha + K_{FB}' \sin \delta_{F} \right] i(b-r)_{A} S_{F}}{2\pi (AR)_{A} (f_{F} - r_{F}) S_{REF}}$$
(14)

This equation is obtained from line-vortex theory assuming only one trailing vortex per forward panel exists (see Figure 8). The lateral location, $f_F^{\ \ \ \ \ }$, and the vertical location, h_A , of the vortex are required for use in Equation (14) and to compute the interference factor, i. The lateral location of the vortex on the forward surface expressed as a fraction of the exposed semispan of this surface is

$$\left(\frac{f-r}{b-r}\right)_{F} = \frac{\frac{\pi}{4} - \frac{\pi}{4}(r/b)_{F}^{2} - (r/b)_{F} + \frac{\left[1 + (r/b)_{F}^{2}\right]^{2}}{2\left[1 - (r/b)_{F}\right]} \sin^{-1}\left[\frac{1 - (r/b)_{F}^{2}}{1 + (r/b)_{F}}\right]}$$

$$2\left[1 - (r/b)_{F}\right] \tag{15}$$

For convenience, the right hand side of this equation is defined as A'. Isolating f_{μ} results in the following expression

$$f_F = A'(b - r)_F + r_F$$
 (16)

where f_F is the spanwise location of the vortex at the forward surface. Since the lateral location of the vortex with respect to the body axis is unchanged, the subscript may be dropped and Equation (16) may be written as

$$f = A'(b - r)_F + r_F$$
 (17)

The vertical location of the vortex, h_A , is measured normal to the body axis at the center of pressure of the aft surface. The expression for h_A is

$$h_{A} = -(C_{r} - X_{h})_{F} \sin \delta_{F} + \left[1_{A} + (\overline{X}_{CP})_{A} - 1_{F} - (C_{r})_{F}\right] \sin \alpha$$
 (18)

Note that the vertical location of the vortex is a function of both angle of attack and the deflection angle of the forward surface.

The interference factor, i, is given by

$$i = \left(\frac{2}{1+\lambda}\right) \left[L\left(\frac{\lambda, r, f, h}{b, b}\right) - L\left(\frac{\lambda, r, f, h}{b, b}\right) - L\left(\frac{\lambda, r, f, h}{b, b}\right) + L\left(\frac{\lambda, r, f, h}{b, b}\right) + L\left(\frac{\lambda, r, f, h}{b, b}\right) \right]$$
(19)

where

$$L\begin{pmatrix} \lambda, \frac{r}{b}, \frac{f}{b}, \frac{h}{b} \end{pmatrix} = \left\{ \frac{(b - r\lambda) - f(1 - \lambda)}{2(b - r)} - \ln\left(\frac{h^2 + (f - b)^2}{h^2 + (f - r)^2}\right) - \left(\frac{1 - \lambda}{b - r}\right) \left[(b - r) + \frac{h}{h^2 + (f - r)^2} \right] \right\}$$

$$+ \ln\left(\frac{h^2 + (f - b)^2}{h^2 + (f - r)^2}\right) - \ln\left(\frac{h^2 + (f - r)^2}{h^2 + (f - r)^2}\right) - \ln\left(\frac{h^2 + (f - r)^2}{h^2 + (f - r)^2}\right) - \ln\left(\frac{h^2 + (f - r)^2}{h^2 + (f - r)^2}\right) - \ln\left(\frac{h^2 + (f - r)^2}{h^2 + (f - r)^2}\right) - \ln\left(\frac{h^2 + (f - r)^2}{h^2 + (f - r)^2}\right) - \ln\left(\frac{h^2 + (f - r)^2}{h^2 + (f - r)^2}\right) - \ln\left(\frac{h^2 + (f - r)^2}{h^2 + (f - r)^2}\right) - \ln\left(\frac{h^2 + (f - r)^2}{h^2 + (f - r)^2}\right) - \ln\left(\frac{h^2 + (f - r)^2}{h^2 + (f - r)^2}\right) - \ln\left(\frac{h^2 + (f - r)^2}{h^2 + (f - r)^2}\right) - \ln\left(\frac{h^2 + (f - r)^2}{h^2 + (f - r)^2}\right) - \ln\left(\frac{h^2 +$$

and

$$f_i = \frac{fr^2}{f^2 + h^2}$$
, $h_i = \frac{hr^2}{f^2 + h^2}$ (21)

Hence, once the location of the vortex is determined and the position of the image vortices, f_i and h_i , is determined from Equation (21), the interference factor can be computed from Equations (19) and (20). The lift-loss due to interference can then be calculated.

The total lift based on an arbitrary reference area is obtained by adding the components

$$C_{L} = C_{L_{B}} + C_{L_{W}} + C_{L_{T}} + C_{L_{i}}$$
 (22)

where C_{L} , a lift-loss, will be a negative quantity. The other three components include both linear and nonlinear contributions.

DRAG CHARACTERISTICS

The total aerodynamic drag acting on a missile is the sum of the zero-lift drag, the induced drag due to angle of attack and/or control surface deflection, and the base pressure drag. It is well-known that the selection of the proper technique for computing the zero-lift drag is determined by the operating speed of the missile. Hence, the methods employed to compute the zero-lift drag of a missile are described for three speed regimes. These speed regimes and their associated limits are defined as follows:

- 1. Subsonic -- M < 0.8
- 2. Transonic -- 0.8 \leq M \leq 1.2
- 3. Supersonic -- M > 1.2

The description of C_{D} calculations for these speed regimes is followed by a description of the method used to compute the induced drag due to angle of attack and/or tail deflection. The last section presents the total drag.

1. Subsonic Region

The zero-lift drag for subsonic speeds can be expressed as

$$C_{D_o} = C_{D_o} + C_{D_o} + C_{D_o}$$
(23)

where each of the components is composed of skin-friction drag and pressure-drag. The pressure drag at subsonic speeds is usually small compared to the drag due to skin friction. Since the flow around high speed missiles of the type being considered here is primarily turbulent, the methods employed are developed assuming the existence of fully turbulent boundary layers.

The zero-lift drag of the body based on an arbitrary reference area is obtained from Section 4.2.3.1 of Reference 9 and can be expressed as

$$C_{D_{O_B}} = 1.02 C_{f_B} \left[1 + \frac{1.5}{(l_B/d_B)^3/2} + \frac{7}{(l_B/d_B)^3} \right] \frac{S_s}{S_{REF}}$$
 (24)

where $C_{\hat{f}}$, the skin-friction coefficient, is determined using Figure 9.

The wing zero-lift drag as presented in Section 4.1.5.1 of Reference 9 is

$${}^{C}D_{O_{W}} = 8.0 C_{f_{W}} \left[1 + 2(t/c) + 100(t/c)^{1/4} \right] \frac{S_{W}}{S_{REF}}$$
 (25)

The factor of 8.0 is included to account for the total wetted area of the surfaces and for the existence of four wings. The tail zero-lift drag, $^{\rm C}_{\rm O_T}$, can be obtained by using the tail thickness-to-chord ratio and the total tail area, ${\rm S_m}$, in Equation (25).

These three components, based on the same arbitrary reference area, are added as indicated by Equation (23) to give the total subsonic zero-lift drag.

2. Transonic Region

The body drag in the transonic speed regime is composed of compressible skin-friction drag, subsonic pressure drag, and transonic wave drag and is obtained using the techniques presented in Section 4.2.3.1 of Reference 9. The compressible skin-friction drag is obtained using the following equation:

$$^{C}_{D_{\mathbf{f}_{B}}} = 1.02 C_{\mathbf{f}_{\mathbf{c}}} \frac{S_{\mathbf{s}}}{S_{REF}}$$
 (26)

where C_f is a function of both Reynolds number and Mach number and can be determined from Figures 9 and 10. The subsonic pressure drag as extracted from Equation (24) is

$$c_{D_{P_B}} = 1.02 c_{f_B} \left[\frac{1.5}{(l_B/d_B)} \frac{1.5}{3/2} + \frac{7}{(l_B/d_B)^3} \right] \frac{s_s}{s_{REF}}$$
 (27)

The transonic pressure drag is computed using Equation (27) up to a Mach number of 1.0 and then it is decreased linearly from its value at 1.0 to zero at M=1.2.

The transonic wave drag of the body is obtained from Figure 11 which presents the wave drag as a function of the nose fineness ratio and Mach number. This figure was constructed from experimental data presented in Reference 10 and by using the curves of wave drag for bodies of revolution as shown in Reference 11 and reproduced here in Figure 12.

The total transonic body zero-lift drag is obtained form the following expression:

$$c_{D_{O_B}} = c_{D_{f_B}} + c_{D_{P_B}} + c_{D_{V_B}} \frac{s_N}{s_{REF}}$$
 (28)

Experimental results show little increase in the viscous drag of the aerodynamic surfaces from the subsonic to the transonic regime and therefore, the skin-friction drag for the subsonic region is also used in the transonic regime. It may be expressed as follows:

$$C_{D_{O_{W}}} = 8 C_{f_{W}} \left[1 + 2 \left(\frac{t}{c} \right) \right]$$
 (29)

To this wing transonic skin-friction drag is added a drag increment, ΔC_{D} , O_{LF}

which is the transonic wave drag of the wing surfaces. Figure 13 expresses this component as a function of thickness-to-chord ratio, $\frac{t}{c}$, aspect-ratio, and Mach number for rectangular surfaces. For surfaces having swept leading edges, ΔC_D is obtained as for rectangular surfaces and then ad-

justed to account for the sweep angle using the following equation:

$$\Delta C_{D_{O_{W}}} = \Delta C_{D_{O_{W}}} \left[\cos \Lambda_{c/4} \right] 2.5 \tag{30}$$

The Mach number used in Figure 13 to obtain $^{\Delta}\,C_{D}^{'}$ for swept lifting surfaces is

$$M' = M \left[\cos \Lambda_{c/4} \right]^{1/2} \tag{31}$$

This component of the drag due to the aerodynamic surfaces must be computed for both the wings and tails. The tail contribution is determined in the same manner as the wing contribution above using tail parameters.

The total transonic zero-lift drag is the sum of these components as shown below:

$$C_{D_{o}} = \left(C_{D_{o_{W}}} + \Delta C_{D_{o_{W}}}\right) \frac{S_{W}'}{S_{REF}} + \left(\Delta C_{D_{o_{T}}} + C_{D_{o_{T}}}\right) \frac{S_{T}'}{S_{REF}} + C_{D_{o_{B}}}$$
(32)

3. Supersonic Region

A simple empirical method for computing the zero-lift drag for the supersonic speed regime has been developed by assuming a parabolic variation of C_{D} with Mach number between 1.2 and 3.0. The resulting equation which is used to compute the zero-lift drag of a missile for Mach numbers greater than 1.2 is

$$c_{D_{o}} = \begin{bmatrix} c_{D_{o}} - c_{D_{o}} \\ \hline \sqrt{3} - \sqrt{1.2} \end{bmatrix} \sqrt{M} + \begin{bmatrix} c_{D_{o}} - c_{D_{o}} \\ \hline 1 - \sqrt{3}/\sqrt{1.2} \end{bmatrix} + c_{D_{o}}$$
(33)

where $C_{\mathrm{D}_{\mathrm{O}}}$ and $C_{\mathrm{D}_{\mathrm{O}}}$ are the values of the total zero-lift drag at Mach numbers 1.2 and 3.0 respectively. It should be noted that although $C_{\mathrm{D}_{\mathrm{O}}}$ for Mach numbers greater than 3.0 can be determined from Equation (33), existing hypersonic flow theories would probably provide a more accurate estimate of the zero lift drag.

In order to utilize Equation (33) for determining the variation of ${\rm C_D}$ with Mach number, ${\rm C_D}$ and ${\rm C_D}$ must be specified. ${\rm C_D}$ is determined by using the techniques described in the previous section for the transonic flow regime. Since the magnitude of the supersonic wave drag is heavily dependent on the nose shape of the missile, ${\rm C_D}$ is determined using one of two methods; the selection of the proper method depends on the missile forebody shape.

In the first method, which is for blunted ogives, pointed ogives, and blunted cones, the supersonic zero-lift drag is a function of Mach number and nose fineness ratio. Since CD is the zero-lift drag at M=3.0, it remains to define its variation with onose fineness ratio. Hoerner, Reference 12, indicates the zero-lift drag for body-fin configurations with slender (high fineness ratio) nose shapes generally peaks at a Mach number of 1.0 to 1.2 and then decreases to approximately its subsonic value plus the transonic wave drag of the lifting surfaces at M=3.0. Similar configurations with blunted nose shapes of low fineness ratio reach a peak at about the same Mach number, but decrease very little as the Mach number is increased. Using these trends as an indication of the effect of fineness ratio on the variation of zero-lift drag with Mach number for the supersonic speed regime, CD for the aforementioned nose shapes is specified as follows:

a) For
$$(1/d)_{N} \le 0.5$$
, $C_{D_{O}} = C_{D_{O}}$
b) For $(1/d)_{N} \ge 8.0$, $C_{D_{O}} = C_{D_{O}} / M=0.8 + \left(\Delta C_{D_{O_{W}}} \frac{S_{W}}{S_{REF}} + \Delta C_{D_{O_{T}}} \frac{S_{T}}{S_{REF}}\right)$

where ${\rm C_{D_{0}}}/_{\rm M=0.8}$ is determined utilizing subsonic flow theory and $\Delta\,{\rm C_{D_{0}}}$

and $^{\Delta C}_{D}$ are the transonic wing and tail wave drag. The variation of the $^{O}_{T}$ forebody wave drag as a function of Mach number is presented in Figure 12 and was used to construct Figure 14 which is utilized with the following equation:

$$c_{D_o}^{"} = \kappa_1 c_{D_o}^{"} \tag{34}$$

to compute $C_{D_{o}}^{"}$ for nose fineness ratios between 0.5 and 8.0.

In the second method, which is for pointed conical noses, $C_{D_{\mathbf{o}}}^{"}$ is determined from the following equation:

$$C_{D_{o}}^{"} = C_{D_{o}} /_{M=0.8} + \left(\Delta C_{D_{o_{W}}} \frac{S_{W}}{S_{REF}} + \Delta C_{D_{o_{T}}} \frac{S_{T}}{S_{REF}} \right) + C_{D_{V_{N}}}$$
 (35)

where the first two terms are obtained in the same manner described above. The forebody wave drag, which for this type of nose is a function of Mach number and the cone semivertex angle, is obtained from Figure 15.

Once $C_{D}^{"}$ is determined, Equation (30) can be used to compute the zero-lift drag at any Mach number between 1.2 and 3.0. The complete zero-lift drag curve of a missile can now be determined.

4. Induced Drag

The induced drag due to angle of attack and/or tail surface deflection is composed of four drag increments as shown below:

$$C_{D_{i}} = \Delta C_{D_{B-\alpha}} + \Delta C_{D_{W-\alpha}} + \Delta C_{D_{T-\alpha}} + \Delta C_{D_{T-\delta}}$$
(36)

The drag increment for the body is obtained using a method presented in Reference 3, while the induced drag due to the wing and tail is obtained from the drag of an equivalent flat plate normal to the flow. The induced drag on a body of revolution at angle of attack can be expressed as follows:

$$\Delta C_{D_{B-\alpha}} = (k_2 - k_1) \left(\frac{S_b}{S_{REF}}\right) \sin^2 \alpha + n C_{dc} \left(\frac{S_p}{S_{REF}}\right) \sin^3 \alpha$$
 (37)

The wing induced drag based on an arbitrary reference area is obtained from

$$\Delta C_{D_{W=\alpha}} = C_{D_{FP}} \left(\frac{S_{W} \sin \alpha}{S_{REF}} \right)$$
 (38)

where $C_{\mathrm{D_{FP}}}$ is the drag of a flat plate normal to the flow field, and is determined from Figure 16. The drag curve shown in Figure 16 has been constructed using the three-dimensional subsonic drag coefficient for a flat plate normal to the flow (Reference 13) and the variation of the drag coefficient with Mach number for the two-dimensional flat plate (Reference 12). The equivalent flat plate area of the wing is taken as the projection of the wing area on the normal plane, $S_{\overline{W}}$ sin α . Similarly, the drag increment of the tail surface at angle of attack is

$$\Delta C_{D_{T-\alpha}} = C_{D_{FP}} \left(\frac{S_{T} \sin \alpha}{S_{REF}} \right)$$
 (39)

The drag increment due to deflection of the tail surface cannot be obtained directly since the drag increment is not a linear function of local angle of attack. The total drag increment for the tail surface can be expressed as

$$\Delta C_{D_{T-\alpha}} + \Delta C_{D_{T-\delta}} = C_{D_{FP}} \left[\frac{S_{T} \sin(\alpha + \delta)}{S_{REF}} \right]$$
 (40)

where $(\alpha + \delta)$ is the local tail angle of attack. It now becomes a simple matter to obtain the drag increment due to the deflection of the control surface by taking the difference between Equations (39) and (40). Thus

$$\Delta C_{D_{T-\delta}} = \left(\Delta C_{D_{T-\alpha}} + \Delta C_{D_{T-\delta}} \right) - \Delta C_{D_{T-\alpha}}$$
(41)

6. Total Drag

The total drag can be expressed as follows:

$$C_{D} = C_{D_{o}} + C_{D_{i}}$$
 (42)

where C_{D} is determined using Equation (36) and C_{D} is obtained from Equation (23), (32), or (33) depending on the speed of the missile. Base pressure drag is not included in Equation (42).

PITCHING MOMENT CHARACTERISTICS

The total pitching moment acting on the missile is the sum of the moments due to the lift and drag forces acting on the body, wings, and tails. Most methods for computing the pitching moment (References 1, 6, and 9) consider only the moment due to lift. This is valid only for small angles of attack. If large angles of attack are to be considered, the moment must include the drag contribution. In general, the body longitudinal pitching moment is determined directly; while the other components are determined only after the centers of pressure of the wing and tail surfaces are specified.

The body-alone pitching moment about its center of gravity is obtained from the method of Allen, References 2 and 3. The expression is

$$C_{m_{B}} = (k_{2} - k_{1}) \left(\frac{V_{B} - S_{B} \left(l_{B} - X_{CG} \right)}{S_{REF} l_{REF}} \right) \sin 2\alpha \cos \frac{\alpha}{2}$$

$$+ \eta C_{dc} \left(\frac{S_{P}}{S_{REF}} \right) \left(\frac{X_{CG} - X_{P}}{l_{REF}} \right) \sin^{2}\alpha$$
(43)

where $(k_2 - k_1)$, C_{dc} , and n are determined from Figures 3 and 4. This moment coefficient, C_{m_B} , is based on an arbitrary reference length and area.

As noted above, the center of pressure locations for the wing and tail surfaces must be specified before their pitching moments can be determined. It must be remembered that the linear lift of the aerodynamic surfaces is composed of two components: the lift on the surface in the presence of the missile body and the additional lift on the body due to the presence of a lifting surface. This means that in order to determine the linear pitching moment caused by the lifting surfaces, it is necessary to specify the center of pressure location for each of these linear components.

The center of pressure of the lift on the wing in the presence of the body as measured from the junction of the wing leading edge and the body is obtained using Figure 17. The reference point is transferred to the nose by using the following equation

$$X_{WB} = \left(\frac{\overline{X}}{C_{r}}\right)_{WB} \left(C_{r}\right)_{W} + 1_{W}$$
 (44)

where $\left(\frac{\overline{X}}{C_r}\right)_{WB}$ is obtained from Figure 17a for subsonic speeds and from Figure 17b for supersonic speeds.

The center of pressure of the additional lift on the body in the presence of the wing is obtained using Figure 18 if the flow is subsonic, and either Figure 19 or 20 if the flow is supersonic. For the case of supersonic flow, Figure 19 is used if

$$\beta AR \left(1 + \lambda\right) \left(1 + \frac{1}{m\beta}\right) \leq 4.0$$

and Figure 20 is used if the above quantity is greater than 4.0. The center of pressure, \overline{X}_{BW} , as obtained from the aforementioned figures, is referred to the nose by using the following equation.

$$\left(\mathbf{X}_{\mathrm{CP}} \right)_{\mathrm{BW}} = \left(\frac{\overline{\mathbf{X}}}{\mathbf{C}_{\mathbf{r}}} \right)_{\mathrm{BW}} \left(\mathbf{C}_{\mathbf{r}} \right)_{\mathrm{W}} + \mathbf{1}_{\mathrm{W}}$$
 (45)

The location of both centers of pressure for the tails, $\begin{pmatrix} X_{CP} \end{pmatrix}_{TB}$ and $\begin{pmatrix} X_{CP} \end{pmatrix}_{BT}$, can also be obtained from the above procedure.

The centers of pressure for a given lifting surface are combined to obtain a single average center of pressure location for each set of aero-dynamic surfaces. For example, the average center of pressure of the wings is obtained by computing the total pitching moment due to the wings and dividing by the wing normal force. The pitching moment about the

nose of the body due to the wing is

$$C_{m_{W}} = \left[\left(C_{L_{WB}} + C_{L_{WV}} + C_{L_{i}} \right) \cos \alpha + \Delta C_{D_{W-\alpha}} \sin \alpha \right] \left[\left(X_{CP} \right)_{WB} / 1_{REF} \right] + \left[C_{L_{BW}} \cos \alpha \right] \left[\left(X_{CP} \right)_{BW} / 1_{REF} \right]$$
(46)

where all of the above terms have been previously defined. The average wing center of pressure as measured from the nose of the body can now be defined as

Similarly, the tail pitching moment and center of pressure including the effect of surface deflection can be expressed as

$$\begin{aligned} \mathbf{C}_{\mathbf{m}_{\mathrm{T}}} &= \left[\left(\mathbf{C}_{\mathbf{L}_{\mathrm{TB}-\alpha}} + \mathbf{C}_{\mathbf{L}_{\mathrm{TV}}} + \mathbf{C}_{\mathbf{L}_{\mathbf{i}}} \right) \cos \alpha + \mathbf{C}_{\mathbf{L}_{\mathrm{TB}-\delta}} + \right. \\ &+ \left(\Delta \mathbf{C}_{\mathbf{D}_{\mathrm{T}-\alpha}} + \Delta \mathbf{C}_{\mathbf{D}_{\mathrm{T}-\delta}} \right) \sin \alpha \right] \left[\left(\mathbf{X}_{\mathrm{CP}} \right)_{\mathrm{TB}} / \mathbf{1}_{\mathrm{REF}} \right] + \left[\mathbf{C}_{\mathbf{L}_{\mathrm{BT}-\alpha}} \cos \alpha \right. \end{aligned} \tag{48}$$

$$+ \mathbf{C}_{\mathbf{L}_{\mathrm{BT}-\delta}} \left[\left(\mathbf{X}_{\mathrm{CP}} \right)_{\mathrm{BT}} / \mathbf{1}_{\mathrm{REF}} \right]$$

$$\left(\mathbf{X}_{\mathrm{CP}}\right)_{\mathrm{T}} = \frac{\mathbf{C}_{\mathrm{mT}} \mathbf{1}_{\mathrm{REF}}}{\left(\mathbf{C}_{\mathrm{L}_{\mathrm{T}-\alpha}} + \mathbf{C}_{\mathrm{L}_{\mathbf{i}}}\right) \cos \alpha + \mathbf{C}_{\mathrm{L}_{\mathrm{T}-\delta}} + \left(\mathbf{\Delta}\mathbf{C}_{\mathrm{D}_{\mathrm{T}-\alpha}} + \mathbf{\Delta}\mathbf{C}_{\mathrm{D}_{\mathrm{T}-\delta}}\right) \sin \alpha}$$
(49)

where

$$C_{L_{T-\alpha}} = C_{L_{TB-\alpha}} + C_{L_{BT-\alpha}} + C_{L_{TV}}$$

and

$$C_{L_{T-\delta}} = C_{L_{TB-\delta}} + C_{L_{BT-\delta}}$$

The total longitudinal pitching moment of the missile about the missile's center of gravity may be expressed as

$$c_{m} = c_{m_{B}} + c_{m_{W}} \left[\frac{x_{CG} - \left(x_{CP}\right)_{W}}{\left(x_{CP}\right)_{W}} \right] + c_{m_{T}} \left[\frac{x_{CG} - \left(x_{CP}\right)_{T}}{\left(x_{CP}\right)_{T}} \right]$$
(50)

COMPUTER PROGRAM DESCRIPTION

The method presented herein for obtaining the static aerodynamic characteristics of a missile has been programmed for use on the IBM 7090 computer and other compatible digital computers. The program, Table 1. is written in Fortran II and requires only the geometric characteristics of the missile and its flight conditions as inputs. The output consists of the static longitudinal aerodynamic characteristics in coefficient form, the center-of-pressure location for the body, wings, and tails, the lift-curve slope for each set of lifting surfaces, and the components of the lift and normal force coefficients. The force components referred to are the body, wing, and tail lift and normal force coefficients and the coefficient representing the lift-loss due to downwash. The aerodynamic characteristics are output in both the stability and body axis systems (Figure 21). Provision has been made for a third lifting surface to account for the possibility of using strakes in combination with two other sets of lifting surfaces (Figure 1).

The program itself consists of a main program and three subroutines—GEOSUB, CLASUB, and CATSUB. The first subroutine performs some initial geometric computations, determines the nose wave drag constant (Figure 14), and obtains the Reynolds number per foot based on the altitude input to the program. Subroutine CLASUB determines the lift-curve slope of the lifting surfaces from curve fits employed to represent the curves presented in Figure 6. The last subroutine, CATSUB, obtains the body-wing and body-tail interference factors, computes the center of pressure location as a function of the root chord of the lifting surfaces, and determines the crossflow drag coefficient for the lifting surfaces.

The program computes the static force and moment coefficients for typical missile configurations at specified angles of attack, control surface deflection angles and Mach numbers. The angle of attack range is -180° to +180°, and any control surface deflection within this range may be used. The Mach number is limited to 3.0 only because the drag prediction methods are valid up to this particular Mach number. The program can be used for configurations at M > 3.0; however, the drag predictions above this limit should be used with caution. The computer

program can be used to obtain build-up information; that is, the aerodynamic characteristics of the missile body alone, the body-wing configuration, and the body-tail configuration. This information may be obtained by simply setting the appropriate parameters to zero.

The inputs to the computer program with their FORTRAN symbols are presented in Table 2. The format for preparing the input cards is presented in Table 3. It should be noted that if a configuration does not have a control surface, e.g. a body alone configuration, the number of control surface deflection angles should be set at one and the deflection angle, itself, would be 0.0 degrees. Cards 11 and 12 are used only when the number of angles of attack require their use. The output variables are defined in Table 4. There is no limit to the number of data decks which may be stacked together and run at the same time.

COMPARISON OF THEORY WITH EXPERIMENTAL DATA

Numerous comparisons of theory with experiment have been made in order to establish and verify the accuracy of the method. Figure 22 presents the configurations used for comparison. Configuration 1 is a strake-tail configuration. Figure 23 presents the comparison between the experimental data and the theoretical results obtained from the method described herein. The theoretical lift and drag are within 15 percent of the experimental data for M = 0.7. The deviation for M = 1.1 does increase to about 25 percent. However, it should be noted that the accuracy of the method to 30 degrees is good. The method also predicts the center of pressure location very satisfactorily.

Configuration 2 is a wing-controlled vehicle. Comparisons are presented in Figure 24 for Mach numbers of 1.12 and 2.16 and for wing deflection angles of 0 and -10 degrees. Although high angle of attack data is not available for this configuration, it appears that the comparatively high theoretical lift shown by Configuration 1 may be more pronounced for Configuration 2. This trend is seen by the decrease in the slope of the experimental lift data at 25 to 30 degrees angle of attack, Figure 24. The comparison with the wing deflected down 10 degrees appeared to be good.

Data for Configuration 3 is presented in Figure 25. Configuration 4 was tested by the Cornell Aeronautical Laboratory to 180 degrees angle of attack, Reference 14. Comparison of theory with experimental data is presented in Figure 26.

CONCLUSIONS

A method for predicting the static, longitudinal aerodynamic characteristics of low aspect-ratio missiles operating at angles of attack to 180 degrees has been developed. The method is valid for a wide speed range and considers control surface deflections. A computer program, written to facilitate use of the method, has been described. Results obtained using the method have been compared with wind tunnel data and acceptable agreement has been demonstrated.

REFERENCES

- Pitts, William C., Jack N. Nielsen and George E. Kaattari.
 Lift and Center of Pressure of Wing-Body-Tail Combinations
 at Subsonic, Transonic and Supersonic Speeds. Wash., 1957.
 70 p. incl. illus. (National Advisory Committee for
 Aeronautics. Rpt. 1307)
- 2. Allen, H. Julian. Estimation of the Forces and Moments
 Acting on Inclined Bodies of Revolution of High Fineness
 Ratio. Wash., D.C. Nov 1949. 27 p. incl. illus. (National
 Advisory Committee for Aeronautics, RM A9126)
- 3. Allen, H. Julian and Edward W. Perkins. Characteristics of Flow Over Inclined Bodies of Revolution. Wash., D.C.,
 Mar 1951. 47 p. incl. illus. (National Advisory Committee for Aeronautics, RM A50L07)
- 4. Jorgensen, Leland H. and Stuart L. Treon. Measured and Estimated Aerodynamic Characteristics for a Model of a Rocket Booster at Mach Numbers From 0,6 to 4.0 and at Angles of Attack From 0° to 180°. Wash., D.C., Sep 1961.

 76 p. incl. illus. (National Aeronautics and Space Administration. Tech. Memo. X-580)
- 5. Flax, A. H. and H. P. Lawrence. The Aerodynamics of Low-Aspect-Ratio Wings and Wing-Body Combinations. Buffalo,
 Sep 1951. [66] 1. incl. illus. (Cornell Aeronautical
 Lab., Inc. Rpt. CAL-37) (Also in Proceedings of Third Anglo-American Aeronautical Conference, Brighton, Eng., 3-14 Sep 1951.
 London, Royal Aeronautical Society, 1952)
- 6. Eaton, Peter T. A Method for Predicting the Static Aerodynamic Characteristics of Low-Aspect Ratio Configurations. Wash., D.C. Jun 1966. 90 p. incl. illus. (Naval Ship Research and Development Center. Rpt. 2216. Aero Rpt. 1112) (AD 647234)
- 7. Gersten, K. Calculation of Non-Linear Aerodynamic Stability

 Derivatives of Aeroplanes. Paris [1962] 20 p. incl.

 illus. (Advisory Group for Aerospace Research and Development.

 Rpt. 342) (Deutsche Forschungsanstalt für Luft und Raumfahrt.

 Bericht 143)

- 8. Frantz, Gerald E. Lift Curve Slopes of Low Aspect Ratio Wings at Transonic Speeds. Columbus, Ohio, Jun 1963. 32 1. incl. illus. (North American Aviation, Inc. Applied Mechanics Tech. Note AM-TN-2-63)
- 9. Douglas Aircraft Co., Inc. USAF Stability and Control DATCOM.

 Rev. W-P AFB, Jul 1963. 2v. (loose-leaf)
- 10. Stoney, William E., Jr. Collection of Zero-Lift Drag Data on Bodies of Revolution From Free-Flight Investigations. Wash., 1961. 188 p. incl. illus. (National Aeronautics & Space Administration. Tech. Rpt. R-100. Formerly NACA TN 4201)
- ll. Royal Aeronautical Society. Data Sheets: Aerodynamics. Vol. 4. London, Aug. 1964.
- 12. Hoerner, Sighard F. Fluid Dynamic Drag. [2d. ed.] Midland Park, N. J., 1965.
- 13. Dommasch, David O., Sydney S. Sherby and Thomas F. Connolly.
 Airplane Aerodynamics. 3rd ed. New York, Pitman [1961]
 600 p.
- 14. Beil, W. J. and others. Major Developments for the Jet Vane Controlled Bomber Defense Missile. Buffalo, Mar 1955.

 226 l. incl. illus. (Cornell Aeronautical Lab., Inc. Rpt. BE-753-S-24. Contract AF33(038)22346)

Figure 1b - Wing Control

Figure 1c - Tail Control

Figure 1d - Three Surfaces - Any Mode of Control

Figure 1 - Typical Missile Configurations

Figure 2 - General Geometric Characteristics

Figure 3 - Parameters Used to Compute Body Normal Force and Pitching Moment (from Reference 3)

Figure 4 - Crossflow Drag Coefficient as a Function of Mach Number (from Reference 3)

Figure 5 - Linear Lift Interference Factors (from Reference 7)

Figure 5a – $(\beta AR)(1 + \lambda)(1/m\beta + 1) \le 4$

Figure 5b - $(\beta AR)(1 + \lambda)(1/m\beta + 1) > 4$; with Afterbody

Figure 5c – $(\beta AR)(1 + \lambda)(1/m\beta + 1) > 4$; No Afterbody

Figure 6a - Unswept Trailing Edge

Figure 6b - Unswept Mid Chord

Figure 7 - Crossflow Drag Coefficient for Wings and Tails as a Function of Aspect Ratio and Taper Ratio

Figure 8 - Vortex Model Used to Determine the Lift Loss due to Downwash (from Reference 1)

Figure 9 - Incompressible Skin Friction Coefficient (from Reference 9)

Figure 10 - Compressibility Effect on Turbulent Skin Friction (from Reference 9)

Figure 11 - Transonic Wave-Drag for Ogival and Blunted Conical Forebodies

Figure 12 - External Wave Drag of Blunt Forebodies (from Reference 11)

Figure 13:- Transonic Zero-Lift Wing Wave Drag for Unswept Wings (from Reference 9)

Figure 14 - Ratio of Wave Drag for Noses of Various Fineness Ratios to the Wave Drag for a Hemispherical Nose

Figure 15 - Wave Drag of a Pointed Conical Nose (from Reference 6)

Figure 16 - Drag Coefficient for a Flat Plate Normal to the Flow

Figure 17 - Lifting Surface Center of Pressure as a Function of Effective Aspect Ratio (from Reference 1)

Figure 17b - M > 1.0

Figure 18 - Subsonic Center of Pressure Location of the Lift on the Body in the Presence of Wings or Tails (from Reference 1)

Figure 18a - No Mid Chord Sweep

Figure 18b - No Trailing Edge Sweep

Figure 19 - Supersonic Center of Pressure Location of Lift on the Body in the Presence of Wings or Tails for $\beta AR(1 + \lambda)(1 + 1/m\beta) \le 4.0$ (from Reference 1)

Figure 19b - No Trailing Edge Sweep

Figure 20 - Supersonic Center of Pressure Location of Lift on the Body in the Presence of Wings or Tails for β AR(1 + λ)(1 + 1/m β) > 4.0 (from Reference 1)

Figure 21 - Missile Axis Systems

Figure 22 - Configurations Used to Compare Theory with Experiment

Figure 23 - Comparison of Experimental Data with Theoretical Results for Configuration 1

Figure 23 (Continued)

Figure 23 (Continued)

Figure 23 (Continued)

Figure 24 - Comparison of Experimental Data with Theoretical Results for Configuration 2

Figure 24 (Continued)

Figure 24 (Continued)

Figure 24 (Continued)

1.0

Figure 25 - Comparison of Experimental Data with Theoretical Results for Configuration 3

Figure 25 (Continued)

Figure 26 - Comparison of Experimental Data with Theoretical Results for Configuration 4

Table 1

COMPUTER PROGRAM LISTING

```
DIMENSION XVXM(16], XDT(16], XAL [48]
     COMMON XVXM, XDT, XAL
     COMMON CN, CA, CNB, CNW, CNT, CNW2, CLW, CLT, CLW2, CLI, CLWB, CLVISW, CLIT,
             CLIW, CNTD, CAB, XCP2, XCG2, XCPB, XCPT, XCPW, XCPW2, XCG, XCPTV,
             XLAMT4
     COMMON LLKK, ISWPW, ISWPT, ISWPW2, IAFBW, IAFBT, IAFBW2, IL, LLLL IJ, J,
             II, NBODY, IZZY, ICSC, INOSE, NM, NMLK, IDT, IM, IAL, ISWP1, IAFB
     COMMON XLAMW, XLAMT, XLAMWZ, YMACW, XMACT, XMACWZ, CLAMW, CLAMT, CLAMWZ,
             BW, BT, BW2, CROOTW, CROOTT, CROOW2, SW, ST, SW2, XWING, XTAIL, XWING2
             ,XL,D,D1,XLN,AREA,XREF,SSUBS,XLAB,ZF,ART,ARW,ARW2,XLNASE
    2
     COMMON COLAM, BCOLAM, CROOT, R1, CLAL1, XLAM1, BAR, RATIO, XKTB, XKBT,
             XKWB, XKBW, XBCRBW, XKWBW, XKWBT, XKWBW2, XKBWW, XKBWT, XKBWW2,
             XCPBW, XCPBT, XCPBWZ, YCPWB, XCPTB, XCPWBZ, XKWBI, ODC, ODCW, ODCT
             EDCW2, CLALW, CLALT, CLALW2, REFT, BETA, AL, TONST, HONST, HT, XKTBI,
    3
             VXM, VXMR1, DELTA, XKCRWB, XBCRWB, XMAC, XLAMW4, XLAM24, XLAM2,
    4
             XLAM4, TOVC, TOVCT, TOVCW2, TOVCW, EXS, STTOT, SWTOT, SW2TOT, RE,
    5
             CD8, CD8w, CD0T, CD08, CD8w2, CL8w, CLW82, CL8w2, CLTR, CL8T, CLTD,
    6
             CLIDB, CLBDT, CLVIST, CLVIW2, CMB, CDOWBT
     COMMON DCDOSW, DCDOST, DCDOSS, DCDOW, DCDOT, DCDOWZ
     COMMON CDALZ
      IL = C
3040 FARMAT[215,7F10.5]
3050 FARMAT[615]
3020 FORMAT[7F10+3]
3010 FBRMAT[10A6]
3110 FORMAT[1H1,10A6]
312C FORMATIGX, 2HHT, 9X, 2HD , 8X, 2HXL, 6X, 6HXLNOSE, 5X, 3HXCG, 6X, 4HAREA, 6X,
3021 FORMATI//,5X,5HTOVCW,5X,6HTOVCW2,5X,5HTOVCT]
      FORMAT [ 3X, 15, 5X, 15, 4X, 7F15.6,//]
3150 FBRMAT[4X, 15, 5X, 15, 5X, 15, 5X, 15, 6X, 15, 5X, 15]
      FORMAT [ 6X,5HISWPW, 5X,5HIAFBW, 10X, 5HXLAMW, 10X, 5HCLAMW,
324C
                                            .10x,5HXMACW,10X,5HXWING,/]
    1 10X,5H BW ,9x,6HCR89TW,10X,5H SW
      FORMAT [ 6x,6HISWPW2, 4x,6HIAFBW2, 9x, 6HXLAMW2, 9x, 6HCLAMW2,
    1 10X,5H BW2 ,9X,6HCR88W2,10X,5H SW2 ,9X,6HXMACW2,9X,6HXWING2,/]
3248 FORMAT [ 6X,5H]SWPT, 5X,5H]AFBT, 10X, 5HXLAMT, 10X, 5HCLAMT,
    1 10X.5H BT . .9X.6HCR88TT, 10X,5H ST .. 10X.5HXMACT, 10X,5HXTAIL, /]
3241 FORMATI//, 6X, 5HICSC , 5X, 5HINDSE, 5X, 5HNDELT, 5X, 5HNMACH, 5X, 5HNALPH,
    15X,5HNB@DYJ
3333 READ 3010, TITL1, TITL2, TITL3, TITL4, TITL5, TITL6, TITL7, TITL8, TITL9,
    1TITLO
     READ 3050, ICSC, INDSE, IDT, IM, IAL, NBODY
     READ 3040, ISWPW, IAFBW, XLAMW, CLAMW, BW, CROOTW, SW, XMACW, XWING
     READ 3040, ISWPW2, LAFBW2, XLAMW2, CLAMW2, BW2, CROOW2, SW2, XMACW2, XWIN
    1G2
     READ 3040, ISWPT, IAFBT, XLAMT, CLAMT, BT, CROOTT, ST, XMACT, XTAIL
           3020, HT.D.XL.XLNOSE, XCG, AREA, XREF
     READ
     READ 3020, TOVOW, TOVOWS, TOVOT
```

```
PRINT 3110, TITL1, TITL2, TITL3, TITL4, TITL5, TITL6, TITL7, TITL8, TITL9,
    1TITLO
     PRINT 3241
     PRINT 3150, ICSC, INOSE, IDT, IM, IAL, NBODY
     PRINT 3240
     PRINT 3140, ISWPW, IAFBW, XLAMW, CLAMW, BW, CROOTW, SW, XMACW, XWING
     PRINT 3244
     PRINT 3140, ISWPW2, IAFBW2, XLAMW2, CLAMW2, BW2, CROOW2, SW2, XMACW2,
    1xwING2
     PRINT 3248
     PRINT 3140, ISUPT, LAFBT, XLAMT, CLAMT, BT, CROOTT, ST, XMACT, XTAIL
     PRINT 3120
PRINT 3020, HT,D,XL,XLH8SE,XCG,AREA,XREF
     PRINT 3021
     FRINT 3020, TOVOW, TOVOW2, TOVOT
      TL = 1 + IL
     LLKK=0
     LLLL=C
      xCG2 ≈ XCG
      1ZZY = C
     CALL GEDSUB
     READ 4000, [XDT[M],M#1,IDT]
   TREAD 4000, [XVXM[N],N=1,IM]
     READ 4000, [XAL[NA], NA=1, TAL]
     RE#REFT*VXM
     VXM=XVXM[1]
     ne 6002 IJ=1, IM
     DFLTA1=XDT[1]
     D8 6001 11=1,IDT
     AL PHA= YAL [1]
4000 FORMAT[16F5.1]
5000 FORMAT[1H1,4HVXMa,F5.2,2X,6HDELTA=,F6.2,/]
5001 FORMATIZX, 2HAL, 3x, 5HCLTOT, 2X, 5HCDTOT, 2X, 4HCLWT, 3X, 4HCLTT, 3X, 3HCLB,
    14X, 3 HCLI, 4X, 3 HCNW, 4X, 3 HCNT, 4X, 4 HCNTD, 3X, 3 HCNB, 5X, 2 HCN, 5X, 2 HCA, 4X,
    24HXCPW, 3X, 4HXCPT, 3X, 4HXCPB, 3Y, 4HXCP2, 4X, 2HCM, /]
8200 PRINT 5000, VXM, DELTA1
     FRINT 5001
     DFLTA=DELTA1/57 + 29578 + • 000000001
     De 6000 Jalilal
     AL=ALPHA/57.29578+.00000001
   1 VXMR1=VXM
     IZZY=IZZY+1
      IF [IZZY - 4] 6666,6666,1111
6666 VXM* +6
1111 CALL CLASUB
     JF[LLLL-1] 900,942,980
 900 [F[1ZZY=4] 6009;6009;925]
     CALL CATSUB
6009 XLAM14=ATAN[[.5*[81-0]*1./00LAM4.25*XLAM1*CR88T-.25*CR88T]/
    1 [ • 5 * [B1 = D]]]
     RE#REFT * VXM * XMAC
     IF [RE-1.E06] 6010,6020,6020
```

```
6010 AA#+0835
     YNN= -. 211
      GB TB 6070
6020 IF [RE+1.E07] 6030,6040,6040
6030 AA=+052
     XNN##.177
      GB TB 6070
6040 IF [RE-1.E08] 6050,6060,6040
6050 AA = • 0333
     XNN==.1488
      G8 T8 6070
6060 AA= • 0221
     XNN=-.127
6070 CF=AA*RF**XNN
     CD0=4.*CF*[1.+2.*T0VC+100.*T0VC**4.]
     FXS*[D*D]/[8 ** COLAM]
     IF [ISWP1=1] 6080,6080,6090
6080 FXS*2. *EXS
609C EXS#[CREST*D/2.+EXS] *2.
     1F [[ZZY=4] 6091,6091,6092
6091 if [172Y=3] 6093,6094,6095
6092 IF [AL] 2401,2402,2402
2401 PDC==8DC
2402 LLKK=LLKK+1
     IF [LLKK-2] 24C3,24C4,2420
2403 IF [SW] 2410,2410,2420
2410 LLKK=LLKK+1
2404 [F [Sw2] 2411,2411,2420
2411 LLKK#LLKK+1
2420 IF [LLKK-2] 930,943,950
93C XKWBW=XKWB
     XKBWW#XKBW
     XCPWB*XWING+XBCRWB*CR88T
     XCPBW=XkING+XBCRBW+CR98T
     eDC##8DC
96C CLW#SIM[AL] * [XKWBW+XKBWW] *CLALW*SW*C8S[AL]/AREA
     CLMB=SIN[AL] *XKWBW*CLALW*SW*COS[AL]/AREA
     CLBH = CLW = CLWB
                [SIN[AL] *SIN[AL] *SW*COS[AL] /AREA] *ODCW
     CLVISW=
     CLW#CLW+CLVISW
6093 CD8W=CD8*[SW+EXS]/AREA
     XLAMW4=XLAM14
     T8VCW=T8VC
     SWTOT#SW+FXS
     122Y=122Y+1
     IF (SW2) 942,942,511
511 COLAM=COS[CLAMW2]/SIN[CLAMW2]
     BCCLAM=BETA*COLAM.
     CR88T=CR88W2
     B1=BW2
     TAFB#IAFBW2
     CLAL1 = CLALW2
     XI AM1 = XLAMW2
     TOVC=TOVCW2
     XMAC#XMACMS
     ISWP1=ISWPW2
```

```
BAR*BETA*ARW2
       RATIO = CROOT/[BETA+D]
       IF[[ZZY-4] 6009,6009,925
  943 XKWBWZ#XKWB
       XKBMM2=XKBM
       XCPWB2=XWING2+XBCRWB*CROOT
       xCPBW2=XWING2+xBCRBW*CR00T
       PDCW2*PDC
  944 CLW2*SIN[AL] *[XKWBW2*XKBWW2] *CLALW2*SW2*C8S[AL]/AREA
       CLWB2=SIN[AL] *XKWBW2*CLALW2*SW2*COS[AL]/AREA
       CLB # 2 = CL W > = CL W & S
      CLVIW2= [SIN [AL] *SIN [AL] *SW2*COS [AL] /AREA] *ODCW2
       CLW2=CLW2+CLVIW2
 6094 CDEW2=CD0+[SW2+EXS]/AREA
       XLAM24=XLAM14
       XLAM2=XLAM14
      SW2TAT=SW2+EXS
       IZZY = IZZY + 1
  942
      1 LKK=LLKK+2
        IF [ST] 980,980,940
  94C COLAM = COS [CLAMT] /SIN [CLAMT]
       ART#[BT=D] **2/ST
      BCOLAM#BETA*COLAM
      CROST = CROATT
      B1=8T
      BAR = BETA * ART
      CLAL1=CLALT
      IAFB=IAFBT
      XMAC=XMACT
      TOVC=T9VCT
      ISWP1=ISWPT
      XLAM1=XLAMT
      RATIA=CRAST/[BETA*D]
      IF [IZZY-4] 6009,6009,925
 950 XKWBT=XKWB
      XKBMT=XKBW
      XCPBT=XTAIL+XBCRBW*CROST
      ppcT=apc
 951 CLT=[[XKWBT+XKBWT] *SIN[AL]] *CLALT*ST*COS[AL]/AREA
     CLTB=SIN[AL] *XKWBT *CLALT *ST *COS[AL] /AREA
     CLBT=CLT=CLTB
     CLTDB=XKTB*CLALT*SIN[DELTA]*ST*COS[AL+DELTA]/AREA
     CLTD=[XKTB+XKBT] *CLALT*SIN[DELTA] *ST*COS[AL+DELTA]/AREA
     CLBDT=CLTD+CLTDB
     CLVIST = [[SIN[AL+DELTA] *SIN[AL+DELTA]] *ST*CBS[AL+DELTA]/AREA] *BDCT
     CLT = CLT + CI VIST
6095 CD9T=CD8*[ST+EXS]/AREA
     STIBT=ST+FXS
     XLAMT4=XLAM14
     IF [1ZZY+4] 1610,1610,6098
6098 XCPTB=XTAIL+[[XKWBT*SIN[AL]*XBCRWB+XKTB*SIN[DELTA]*XBCRWB]/
    1 [XKWBT*SIN [AL]+XKTB*SIN [DELTA]]] *CROOTT
 980
     IF-CIZZY - 41 1610, 1610, 1710
171C
     XTGB = XT\D
     ZXM*VXM*ABS[SIN[AL1]
     IF [ZXMm+8] 1310,1350,1350
1310 CDC=2.4-SQRT[1.5129-1.5129*ZXM*ZXM]
     GB TB 1391
```

```
1350 if [ZXM-1.15] 1380,1370,1370
 1380 CDC=1.6+SGRT[.C344=[ZXM=.975]++2]
      S9 T0 1391
 1370 TF [ZX"-3.] 1360,1381,1381
 1360 CDC#1.9-SQRT[.361-.09*[ZXM-3.]**2]
      GB TB 1391
1381 cnC*1.3
1391 ETA=[0.0000475*[xL0B**3]]=[0.00173*[XL0B**2]]+[0.0298*XL0B]+0.5146
      IF [VXM-+5] 1395,1395,1392
1392 IF [VXM-1.4] 1393,1394,1394
1393 ETA=ETA+[1.=ETA] +[VXM=.5] + 1.11111111111111
      G9 TP 1395
1334 ETA=1.
1395 IF [XLº8-10.] 1320,1330,1340
1320 XX2X1==0.0054 * [XL88**2] +0.104 * XE8B+0.437
      GB TE 1600
1330 XK2K1=0.939
      GR TB 1600
1340 XK2K1=0.939+[0.001525*[XL8R+10.0]]
-1600 ALP=AL
      IF[AL] 1602,1601,1601
1602 CDC=-CDC
1601 CNB=[XKZK1*SIN[2.*ALP]*C0S[ALP/2.]]*3.14159*D*D/[4.*AREA]
     1+FTA*CDC*[[XL*D]/AREA]*[[SiN[ALP]]*#2]
      XC=XCG/D
      CM31=[XK2K1*XQ*SIN[2.*ALP] +CBS[ALP/2.]] +3.14159*D*D*D/
     1 r4 * * AREA * XPEF]
      CMB2=[FTA+CDC+([XL+D]/AREA1+[[XCG+[XL/2+]]/D]+[[SIN[ALP]++2]]]
     1 * D / XREF
      CMB=CMB1+CMBS
      RF=REFT+VXM+XL
1610
      TF [RE-1-E06] 1611,1612,1612
1611 AA= + 0835
      VAN. = - 211
      39 TB 1617
1612 1F [RE-1 • E07] 1613,1614,1614
1613 AA=+C52
      えんたヨー・1ファ
      GB TA 1617
1614 TF [RE-1.E08] 1615,1616,1616
1615 AA=+C33
      XNN==.1488
      G9 T9 1617
1616 AA=+0221
      XNN=-.127
1617 OFBBD=AA*RE**XNN
      CDBB =1.02*CFB9D*[1.+1.5/[xL0B*#1.5]+7./[XL0B**3.]]*SSUBS/AREA
      IF [TZZY-4] 1618,1618,1619
 1618 VXM=1.1999999
      1F [SW] 1620,1620,1621
1620 CD8W#O.
 1621 [F [Sw2] 1622,1622,1623
1622 TODBW2=0.
1623 [F [ST] 1624,1624,1625
1624 CDUT=0.
 1625 FANST=CD8W+CD8W2+CD8T+CD8B
```

```
GB TP 1639
 1619 IF [VXM-1.2] 1631,1631,1632
 1631 IF [VXM=+8] 1638,1638,1639
 1638 CDALZ=CD08
      CD8WBT=CD8B+CD8W+CD8T+CD8W2
      GA TA 1663
      IF [SW] 1700,1700,1701
1639
1700
       DCDBSW = 0.0
       SNTET=0.0
       CDBW = .0.0
       G9 T0 1702
       XXM = VXM*SQRT[C0S[XLAMW4]]
      SGMITC = SGFT [ABS[(XXM + XXM) = 1 .0]]/[TOVCW + 0 . 33333]
      IEEEEEE. **WOVET] *WAA TOTA
      17T=1
1640 IF [ATC-1.5] 1641,1642,1642
1642 IF [VXM-1.] 1643,1643,1644
1643 FUNCT=3.3081-1.88779*SGMITC+11.0916*SQMITC*SQMITC*18.6087*
     1SGMITC**3+7.4633*SGMITC**4
     Ge Te 1650
1644 FLNCT=3.4
      on TO 1650
1641 IF [ATC= • 5] 1645, 1645, 1646
1646 IF [VXM-1.] 1647,1647,1648
1647 FUNCT=2.47917=1.42798*5QMITC+.324405*$QMITC*$QMITC
     GB 18 1650
1648 FUNCTHE . 5*ATC
     GA TO 1650
1645 IF [VXM-1.] 1649,1649,1651
1649 FUNCT = . 5325 = . 47202 * SGMITC + . 08631 * SGMITC * SGMITC
      GB TB 1650
1651 FUNCT= . 55917+ . 33333*SQMITC = . 071429*SQMITC*SQMITC
1650 IF [IZT-2] 1652,1653,1654
1652 DCD85W=FUNCT+[T8VCW++1.66667]+[[C85[XLAMW4]]++2.5]
     DCDBW=DCDeSW
1702
      IF [SW2] 1703,1703,1704
1703
      DCD882 # 0.0
      SW2TOT = 0.0
      CD8W2= 0.0
      G8 T8 1705
1704
     XXM=VXM*SQRT[CBS[XLAM24]]
     SGMITC=SGRT[ABS[[XXM*XXM]+1+]]/[T@V@W2**Q.33333]
     ATC = ARW2 * [TOVCW2 * * . 33333]
     G8 T9 1640
1653 DCD052=FUNCT*[T0VCW2**1.66667]*[[C05[XLAM24]]**2.5]
     DCDBMS=DCDASS
1705
      IF [ST ] 1706,1706,1707
      DCD8ST = G.O
1706
     STIBT=C.O
      CDOT = C.O
      G8 T8 1708
1707
      127 = 3
     XXM#VXM*SORT [C85 [XLAMT4]]
     SGMITC=SGRT (ABS[EXXM*XXM]=1.)]/[70VCT**0.33333]
     ATC * ART * [TOVCT * * . 33333]
     G8 T8 1640
```

```
1654 DCD0ST#FUNCT*[T0VCT**1.66667] *[[C0S[XLAMT4]] **2.5]
     DCDOTEDCDOST
     COVC = 1.31213=0.36633*VXM+.06038*VXM**2=:00601*VXM**3+.000275*
1708
    1 V X M * * 4
     CDFPTR=1 + 02 + CF80D + C8VC + SSUBS/AREA
      CDPPTR=CD0B=1.02*CFB0D*SSUBS/AREA
     TF[VXM=1.C] 1709,1709,1711
1711 CDPPTR * [CDPPTR/0.2] * [1.2+VXM]
1709 FR=XLNOSE/D
     CDWN1=0.000407*[FR**8]=0.0102*[FR**7]+0.108*[FR**6]=0.616*[FR**5]
    1+2.074*[FR**4].4.183*[FR**3]+4.891*[FR**2].3.017*FR+0.7795
     CDWN2=0.000172*[FR**8] =0.00453*[FR**7]+0.050*[FR**6] -0.304*[FR**5]
    1+1.096*[FR**4] =2.406*[FR**3]+3.160*[FR**2] =2.391*[FR]+1.000
     CDWN3=+000125*[FR**8]-+00370*[FR**7]++0447*[FR**6]-+288*[FR**5]
    1+1.076*[FR**4].2.385*[FR**3]+3.141*[FR**2].2.529*FR+1.30C
     TF[VXM=0.8] 1664,1661,1662
1661 CDPTR=CDWN1
     Ge T9 1658
1662 IF [VXM=1:0] 1655,1665,1666
1665 CDPTR=CDWN2
     G8 TR 1658
1655 CDPTR=[[CDWN2-CDWN1]/0.2] + (VXM=0.8] + CDWN1
     GB TB 1658
1666 [F[VXM=1.2] 1667,1668,1664
1668 CDPTR#CDWN3
     GB TB 1658
1667 CDPTR=[[CDWN3=CDWN2]/0.2] + TVXM=1.0] + CDWN2
     GB T9 1658
1664 CDPTR=0.0
1658 CD88#CDFPTR+CDPTR+CDPTR*VXM*3+14159*D*D/[4+*AREA]
     CDALZECDOB
     CD9T=1+1*[DCD0ST*[STT0T/ARFA]+CD0T]
     CD8w=1.1*[DCD8sW*[SWT8T/ARFA]+CD8W]
     CD8W2=1.1*[CD8W2+DCD8S2*[SWT8T/AREA]]
     CDOWBT=1.1*[CDOW+DCDOSN*[SWTOT/AREA] +CDOW2+DCDOSR*[SW2TOT/AREA]
    1+CD0T+DCD0ST*[STT0T/AREA]+CD0B]
     IF [IZZY-4] 1659,1659,1663
1655 TANST=CDOWBT
     HANST=HONST+ZF * [TONST-HONST]
     VXM=VXMR1
      TZZY # 12ZY + 1
     GB TB 1
1632 CD8WBT = [[H8NST+T8NST]/[SQRT[3.] +SQRT[1.2]]] +SQRT[VXM]+T8NST
    1+[H8NST-T8NST]/[1.=SGRT[3.]/SQRT[1.2]]
     CDOT=1.1*[DCD07 *[STT0T/AREA]+CD0T]
     CD8W=1.1*[DCD8N *[SWT8T/AREA] +CD8W]
     CD8W2=1.1*[CD8W2+DCD8W2*[SWJ8T/AREA]]
     CD8B=CD8WBT-CD8T-CD8W#CD8Wp
     CDALZECDOB
1663 CDH=XK2K1*SIN[2.*AL]*SIN[AL/2.]*3.14159*D*D/[4.*AREA]+ETA*CDC*XL
    1*D*[[SIN[AL]]**3]/AREA
     CLB*XK2K1+[SIN[2.*AL]] *C9S[AL/2.]*3.14159*D*D/[4.*AREA]+ETA*CDC*XL
    1*D*[[SIN[AL]]**2]*COS[AL]/AREA=CDAL7*COS[AL]*COS[AL]*SIN[AL]
     CAS#CDBWBT
     JF[AL] 1603,16C4,1603
```

```
1604 XCPB#0.0
     G9 T9 1605
1603 XCPB=[[XCG/XREF]-[CMB/CNB]]*XREF
1605 IF [SW] 1607, 1607, 1606
1606 [F [ST] 2973,2973,1608
1607 [F [ST] 1990,1990,2974
1608 R=D/2.
      IF [[CSC - 1] 1970,1970,1971
1971 XB1 BBW/2.
     X82=BT/2.
     TT=D/RT
     HW1 = +0 +5 *CROOTT * ABS [SIN [DELTA]] + [XCPWB = XTAIL = CROOTT] * ABS [SIN [AL]]
     XI AM1 = XLAMW
     GR. TS: 1969
1970 XB1#BT/2.
     XB2*BW/2*
     TT=D/BW
     HW1 = [XCPTB = XW ING = CROOTW] * ABS[SIN[AL]]
     XLAM1 = XLAMT
1965 FTRT=[[XB2=R]/[2.*[1.-TT]]]*[[3.14159/4.]=[[3.14159*TT**2]/4.]=TT+
    1[[[1.+TT**2]**2]/[2.*[1.-TT**2]]]*ARSIN[[1.-TT**2]/[1.+TT**2]]]
     FW=FTRT+R
     F 11 = [FW*R**2] / [[FW**2] + [HW1**2]]
     411=[HW1*R**2]/[[FW**2]+[HW1**2]]
     ZD=HW1
     71 T=0.0
     De 1800 I=1.4
     ZL1"[[XB1-[XLAM1*R]]-[ZC*[i--XLAM1]]]/[2.*[XB1-R]]
     ZL2*AL8G[[[ZD**2]+[[ZC*XB1]**2]]/[[ZD**2]+[[ZC*R]**2]]]
     ZL3=[[1.-XLAM1]/[X81-R]]+[[XB1-R]+[ZD*[ATAN[[ZC+XB1]/ZD]-ATAN[[ZC+
    181/Z01111
     7L=[ZL1*ZL2] -ZL3
     IF[[-2] 1810,1820,1820
1810 ZC==ZC
     ge T9 1850
182C TF[[ +3] 1830,1840,1850
1830 ZL= ZL
     ZC=FI1
     ZD=HI1
     GB TB 1850
1840 ZL==ZL
     ZC==F11
1850 7LT=ZLT+ZL
1800 CONTINUE
     IF[ICSC=1] 2970/2970/2971
2970 ART=[BT-D] **2/ST
     XBT#BT/2.
     CLI = [CLALW*CLALT*XKWBI*SIN[AL]*SW*2.*ZLT*[XBT=R]]/[2.*3.14159*ART*
    1FTRT * AREA * [1 + XLAMT]]
     CLI = CLI + Ces [AL]
     CLT=CLT+CLI
     CLIT=CLI
     CLIM=0 .
     XCPTV=XCPTB
     GB TB 2972
```

```
2971 ARW = [BW-D] **2/SW
     XBW#BW/2.
     CLI + [CLALW+CLALT+ [XKWBI+SIN[AL]+XKTBI+SIN[DELTA]]+ST+2.+ZLT+[XBW+
    1R]]/[2 **3 *14159*ARW*FTRT*AREA*[1 **XLAMW]]
     CLI * CLI + COS (AL)
     CLW=CLW+CLI
     CIIWaCLI
     CLIT=0.
     XCPTV=XCPWB
     GB TB 2972
2973 CLT*0.
     CIALTEC.
     CL TD=0.
     CDTD #0.
     CLBT=0.
     CLBDT:0.
     CLTB=0.
     CLTDB=0.
     CLVIST=0.
     CLIT=0.
     CLIW#O.
     CLI=0.
     G8 T8 2972
2974 CI W=C.
     CLALW=0.
     CLBW=0.
     CLWB=0.
     CLVISW=0.
     CLIWEO.
     CLIT = O.
     CLI=C.
2972 IF [SW2] 700,700,701
 700 CLW2=0.
     CLALW2 = C+
     CLBW2=0.
     CLWB2 BC.
     CLVIW2=0.
 7C1 ALPHARAL
     IF [VXM=0.5] 1975, 1976, 1976
1975 XK=1.17
     GB TB 1973
1976 IF[VXM-1.] 1977,1978,1978
1977 XK=2.0=SQRT[0.764-[VXM=0.126] +*2]
     GB T0 1973
1978 IF[VXM-2.0] 1979,1979,1980
1975 K-2-0-SCRT[1-298-[VXM-2-13 ]**2]
     GB TB 1973
1980 XK=0.87
1973 CDT=XK * ABS[SIN[AL]] *ST/AREA
     CDW#XK*ABS [SIN [AL]] *SW/AREA
     CDW2=XK*ABS[SIN[AL]]*SW2/AREA
     CDD#XK*ABS[SIN[AL+DELTA]] *ST/AREA
     CDTD=CDD+CDT
     CATD=CDTD+COS[AL] -CLTD+SIN[AL]
     CNTD=CLTD*C8S[AL]+CDTD*SIN[AL]
     CNT*CLT*COS[ALPHA] +CDT*SIN[ALPHA]
     CAT=CDT+COS[ALPHA] -CLT+SINEALPHA]
     CAW2=CDW2+CBS[AL] -CLW2+SIN [AL]
```

```
CAW*CDW*COS [ALPHA] +CLW*SIN [ALPHA]
       CNW=CLW+CBS [ALPHA]+CDW+SIN [ALPHA]
       CNW2=CLW2*C8S[AL]+CDW2*SIN[AL]
       CAB = CDB + COS [AL] - CLB + SIN [AL]
       CA5*CAT+CAW+CAM2+CATD+CAB
       GB TB 1991
  1990 CN≃CNB
       XCP2=XCPB
       CA=CA5
       CL TOT = CLB
       CDTOT=CDB+CA*COS [AL] *COS [AL]
       CLALT=0.
       CLALW=C.
       CDI=C.
       CDD=0.0
       CDW=0.
       CATD=0.
       CNTD=0+
       CNT=C.
      CAT=C.
      CAW . C.
      CNW=C.
      CLWEC.
      CITEO.
      CII=O.
      CITT=0.
      CLWT=0.
      CLALW2=0.
      CPW2 #0.
      CANZ=0.
      CNTT=0.
      CNNT=0.
INNTE=C.
      CNW2=0.
      CLW2=0.
      CLMST=0.
      XCPW2=0.
      XCPT=C.
      XCPW=0.
      GB TB 1992
1991 CN=CNB+CNW+CNT+CNTD+CNW2
      CLTT = CLBT + CLTB + CLBOT + CLTDB + CLIT + CLVIST
      CLWT * CLBW+CLWB+CLIW+CLVISW+CLBW2+CLWB2+CLVIW2
      CNTT = [CLIT+CLTB+CLBT+CLVIST] * COS[AL] + CDT*SIN[AL] * CLTDB+CLBDT
     CNWT=[CLIW+CLWB+CLBW+CLVISW]*CBS[AL]+CDW*SIN[AL]
     CNWT?=[ CLWB2+CLBW2+CLVIW2]*C8S(AL]+CDW2*SIN[AL]
     CLTOT=CLTT+CLWT+CLB
     CDT91=CD8+CDW+CDD+CDW2+CD8W8T
     CA=CDTAT*CAS[AL] -CLTAT*SIN[AL]
      IF (ST) 9901,9901,9902
9908 XCPT*[[CLTB*C0S[AL]+CDD*S[N[AL]]*XCPTB+CLBT*C0S[AL]*XCPBT+CLTDB*
    1xCPTB+CLBDT*XCPBT+CLIT*C0S(AL)*XCPTB+CLVIST*C0S(AL)*XCPTB]/CNTT
9901 IF [Sk] 9903,9903,9904
99C4 YCP% = [[CLkB*C85[AL]+CDW*S[M[AL]]*XCPWB+CLBW*C85[AL]*XCPBW+CLIW*
    1C8S[AL] *XCPWB+CLVISW*C8S[AL] *XCPWB]/CNWT
      IF (SW2) 9903, 9903, 1993
```

```
1993 XCPW2 = ((CLWB2 + COS (AL) + CDW2 + SIN (AL)) + XCPWB2 + CLBW2 + COS (AL) + XCPBW2
    1+CLVIW2+C8S[AL] *XCPWB2]/CNWT2
9903 IF [SW2] 1994,1994,1995
1994 XCPW2=0.
     CNWT2=0.
     TF [SW] 1997,1997,1995
                                               ] * CNWT2] / [CNWT + CNWT2]
1995 XCPW=[[XCFW
                        - ] *CNWT+ [XCPW2
     CNWT = CNWT + CNWT2
     IF [SW] 1997,1997,1998
1997 XCPW=0+
1998 IF [ST] 1999,1999,1996
1999 XCPT=0.
1996 XCP2=[CNB+XCPB+XCPT+CNTT+XCPW+CNWT]/[CNB+CNTT+CNWT]
1992 CM=CN*[XCG2*XCP2]/XREF
7CC1 AL1=AL*57.29578
87CC PRINT 5002, ALI, CLTBT, CDTBT, CLWT, CLTT, CLB, CLI, CNWT, CNTT, CNTD, ENB,
    1CN, CA, XCPW, XCPT, XCPB, XCP2, CM
5002 FBRMAT [1x,F4.0,17[1x,F6.2]]
     ALPHA=XAL[J+1]
6000 CONTINUE
     PRINT 9400, CLALT, CLALW, CLALW2
9400 FBRMAT[//, 2X16HCLALT=, F6.3, 5X, 6HCLALW=, F6.3, 5X, 7HCLALW2=, F6.3]
     DELTA1=XDT[II+1]
6001 CONTINUE
     VXM=XVXM[[J+1]
6002 CONTINUE
     IF [NBODY=IL] 3334,3334,3333
3334 CANTINUE
     STOP
     END
```

```
SUBROUTINE GEOSUB
     DIMENSION XVXM(16], XDT(16], XAL(48)
     COMMON XVXM, XDT, XAL
     COMMON CN, CA, CRB, CNW, CNT, CNW2, CLW, CLT, CLW2, CLI, CLWB, CLVISW, CLITA
             CLIW, CNTD, CAB, XCP2, XCG2, XCPB, XCPT, XCPW, XCPW2, XCG, XCPTV,
             XLAMT4
    2
     COMMON LLKK, ISWPW, ISWPT, ISWPW2, TAFBW, IAFBT, IAFBW2, IL, LLLL IJ, J,
             II, NBODY, IZZY, ICSC, INOSE, NM, NMLK, IDT, IM, IAL, ISWP1, IAFB
     COMMON XLAMW, XLAMT, XLAMWZ, YMACW, XMACT, XMACWZ, CLAMW, CLAMT, CLAMWZ,
             BW, BT, BW2, CROOTW, CROOTT, CROOW2, SW, ST, SW2, XWING, XTAIL, XWING2
             ,XL,D,D1,XLN,AREA,XREF,SSUBS,XLOB,ZF,ART,ARW,ARW2,XLNOSE
    2
     COMMON COLAM, BCOLAM, CROOT, RI, CLALI, XLAMI, BAR, RATIO, XKTB, XKBT,
             XKWB, XKBW, XBCRBW, XKWBW, XKWBT, XKWBW2, XKBWW, XKBWT, XKBWW2,
             XCPBW, XCPBT, XCPBW2, YCPWB, XCPTB, XCPWB2, XKWBI, 8DC, 8DCW, 8DCT,
             BDCW2, CLALW, CLALT, CLALW2, REFT, BETA, AL, TONST, HONST, HT, XKTBI,
    3
             VXM, VXMR1, DELTA, XKCRWB, XBCRWB, XMAC, XLAMW4, XLAM24, XLAM2,
             XLAM4, TOVC, TOVCT, TOVCW2, TOVCW, EXS, STTOT, SWTOT, SW2TOT, RE,
    5
             CD8, CD8W, CD8T, CD8B, CD8W2, CLBW, CLWB2, CLBW2, CLTB, CLBT, CLTD,
    6
             CLTDB, CLBDT, CLVIST, CLVIW2, CMB, CD8WBT
     COMMON DCDOSW, DCDOST, DCDOSS, DCDOW, DCDOT, DCDOW2
     COMMON CDALZ
      DRAT = XLN8SE/D
      D1=0
      XLOB = XL/D
     IF [CLAMW-5+] 10,10,20
  10 CLAMW=5.
  20 [F[CLAMW2-5.] 30,30,40
  3C CLAMW2=5.
  40 IF [CLAMT-5.] 50,50,60
  50 CLAMT=5.
  60 CANTINUE
     CI AMW = CLAMW/57.29578
     CLAMT=CLAMT/57,29578
     CLAMW2=CLAMW2/57.29578
     IF [INOSE-1] 1571,1572,1571
1572 SS1=8.+3.*[DRAT=2.5]
     GB TB 1579
1571 IF [INDSE=2] 1573,1574,1573
1574 SS1=4.+8.* [DRAT=1.5]/3.
     GB TB 1579
1573 IFILNOSE 31 1579, 1576, 1579
     SS1=4.+2.*[DRAT=1.87]
     SSUBS=SS1*[3.14159*D*D/4.]+3.14159*D*[XL-XLN8SE]
     IF [DRAT=.6] 1580,1580,1581
1580 7F=1+
     G8 T8 1594
1581 ZF=1.522*EXP[=.7*DRAT]
1594 7=HT*0.0C1
     JF[HT-35332.0] 1595,1595,1596
1595 T=519. PHT/280.
      PS=[1.91=0.01315*Z]**5.256
     GB TB 1597
1596 T=393.
     B=1.69=0.0478#Z
     PS=6+49*EXP[8]
```

1597 C=49.1*SQRT[T]
PS=PS*70.9
RH0=PS/[1715.*T]
XMU#2.270*[T**1.5]/[[T*198.6]*[10.**8]]
REFT*[C*RH0]/XMU
RETURN
END

```
SUBROUTINE CLASUB
     PIMENSIEN XVXM(16), XDT(16), XAL [48]
     COMMON XVXM, XDT, XAL
     COMMON CN, CA, CNB, CNW, CNT, CNW2, CLW, CLT, CLW2, CLI, CLWB, CLVISW, CLIT,
             CLIW, CNTD, CAB, XCP2, XCG2, XCPB, XCPT, XCPW, XCPW2, XCG, XCPTV,
             XLAMT4
     COMMON LLKK, ISMPW, ISMPT, ISMPW2, TAFBW, TAFBT, TAFBW2, TL, LLLL, IJ, J,
             II, NBODY, IZZY, ICSC, TNOSE, NM, NMLK, IDT, IM, IAL, ISWP1, IAFB
     COMMON XLAMW, XLAMT, XLAMWZ, XMACW, XMACT, XMACWZ, CLAMW, CLAMT, CLAMWZ,
             BW, BT, BW2, CROOTW, CRAOTT, CROOW2, SW, ST, SW2, XWING, XTAIL, XWING2
             ,XL,D,D1,XLN,AREA,XREF,SSUBS,XLOB,ZF,ART,ARW,ARW2,XLNOSE
    2
     COMMON COLAM, BOOLAM, CROOT, B1, CLÂL1, XLAM1, BAR, RATIO, XKTB, XKBT,
             XKWB,XKBW,XECRBW,XKWBW,XKWBT,XKWBW2,XKBWW,XKBWT,XKBWW2,
             XCPBW, XCPBT, XCPBW2, XCPWB, XCPTB, XCPWB2, XKWB1, 0DC, 0DCW, 0DCT,
    2
             ODCW2, CLALW, CLALT, CLALW2, REFT, BETA, AL, TONST, HONST, HT, XKTBI,
    3
             VXM, VXMR1, DELTA, XKCRWB, XBCRWB, XMAC, XLAMW4, XLAM24, XLAM2,
             XLAM4, TOVC, TOVCT, TOVCW2, TOVCW2 EXS, STTOT, SWTOT, SW2TOT, RE,
    5
             CD8, CD8, CD8T, CD8B, CD8W2, CLBW, CLWR2, CLBW2, CLTB, CLBT, CLTD,
             CLTDB, CLBDT, CLVIST, CLVIW2, CMB, CDOWBT
     COMMAN DCDOSW, DCDOST, DCDOSP, DCDOW, DCDOT, DCDOW2
     COMMON CDALZ
     IF [VXM=1.]2,2,3
   2 BETA #SGRT [1 - VXM**2]
     G8 T8 4
   3 BETA#SGRT [VXM**2=1.]
   4 TETIZZY=41902,902,1111
1111 IF [VXM=1.] 41,42,41
  42 BETA=0.0000001
  41 KFIN=0
     KFIN#KFIN+1
      TF [SW] 504,504,411
 411 ARW * [BW - D] ** 7/SW
     PAR BETA + ARW
                                  selfor Wing
     ISWP=ISWPW
     XLAM=XLAMW
     ARMARW
 505 IF [ISMP#1] 5,5,200
   5 IF [XLAM=,25] 60,10,10
  1C IF [VXM=1.0] 20,20,30
  20 CLAR = - 1833 *BAR+1 .6
     de T6 370
  30 IF[BAR=1.] 50,40,40
  4C CLAR=1.508*[1.26]**[2.=BAR]
     G8 T8 370
  50 CLAR = . 3 + BAF+1 . 6
     ce T6 370
  60 TF[VXM=1.1 70,70,80
  70 CLAR = + 1667*BAR+1 +575
     98 T9 370
  86 TF[BAR+1.] 90,90,100
  90 CLAR = +1667 *BAR+1 - 575
     GB TB 370
 100 [F[BAR-2.] 110,110,120
 110 CLAR#1.7417
     GB TB 370
```

```
12C CLAR#1 . 428 * [1 . 22] * * [2 . . BAR]
    GB TO 370
20C IF [XLAM=.1] 210,260,260
210 IF[VXM=1.] 220,220,230
22C CLAR ** * 2077 *BAR * 1 * 575
     GB TB 370
230 IF[BAR-+25] 240,240,250
240 CLAR = . 2077 * BAR + 1 . 575
    G8 T8 370
25C [F[BAR-4.] 251,251,252
251 CLAR = - 1668 *BAR+1 • 667
     G8 T8 370
252 CLAR=1.587*[1.26]**[2.*BAR]
    G8 T8 370
26C IF [XLAM=.3] 270,320,320
27C 1F[VXM=1.] 280,280,290
28C CLAR = - . 2065 * BAR + 1 . 6
    GB TB 370
290 IF [BAR+0+75] 300,300,310
30C CLAR=.2065*BAR+1.6
    G8 T8 370
31C IF [BAR-2.5] 311,311,312
311 CLAR = + 217 *BAR+2 + 293
    GB TB 370
312 CLAR=1.543*[1.26]**[2.=BAR]
    G8 T8 370
32C IF[VXM-1.] 330,330,340
330 CLAR = + 225 *BAR+1 +675
    G8 T8 370
34C [F[BAR=1+] 350,350,360
350 CLAR= . 225 *BAR+1 . 675
    G8 T8 370
36C CLAR=1.508*[1.26] **[2. +BAR]
37C [F[AR-1.0] 800,800,810
80C ARR#1.0
    GB TB 820
81C ARR=1./[AR**[[AR*1.]/AR]]
82C CLAL=CLAR+ARR+AR
      IF [KFIN-2] 500,501,502
ECC CLALWECLAL
    G8 T8 503
501
     CLALWS=CLAL
    GB TB 503
502 CLALT=CLAL
503 IF [KFIN-2] 504,507,900
504 KEIN#KEIN+1
    IF [SW2] 507,507,506
506 AR=[BW2-D] **2/SW2
    BAR*BETA*AR
                      set for wing 2 go hock+ star avel
    ISWP=ISWPW2
    ARW2=AR
    XI AM #XLAMW2
    G8 T9 5C5
```

```
EC7 KFIN#KFIN+1
     IF [ST] 509,509,508
 508 ARE[ETPD] #*2/ST
     BAR BETA AR
     ARTMAR
     ISWP#ISWPT
     XLAM = XLAMT
     GB TB 505
 509 IF (SW) 5100,5100,900
5100 IF [SW2] 5110,5110,900
5110 IF [ST] 980,980,900
 980 LLLL=2
     RETURN
 900 LLKK#0
      122Y = 122Y + 1
 902
      IF [SW] 510,510,901
 9C1 CBLAM= CBS[CLAMW]/[SIN[CLAMW]]
      ARW = [BW = D] * *2/SW
     BCULAM = BETA + COLAM
     CROOT . CROOTW
     B1=BW
      IAFB IAFBW
     XMAC=XMACW
     TOVC=TOVCW
     CLAL1=CLALW
     XLAM1=XLAMW
      ISWP1=ISWPW
     BAR*BETA*ARW
     RATIO = CROOT/ (BFTA*D)
     LLLL=0
     RETURN
      12ZY = 12ZY + 1
       IF [SW2] 942,942,511
 942 LLLL=1
     RETURN
 511 COLAM COS[CLAMW2]/[SIN[CLAMW2]]
     RCOLAM=BETA+COLAM
     CROST = CROSW2
     P1=BW2
      1AFB=IAFBW2
     CLAL1=CLALW2
     XLAM1=XLAMW2
     XMAC#XMACW2
      TOVC=TOVCW2
      ISWP1=ISWPW2
      ARW2=[BW2=D] **2/SW2
     BAR BETA # ARW2
     RATISECROST/ (BETA #D)
     LLLL=0
     RETURN
     END
```

```
SUBREUTINE CATSUB
     DIMENSION XVXM(16], XDT [16], XAL [48]
     CAMMON XVXM, XDT, XAL
     COMMON CN, CA, CNB, CNW, CNT, CNW2, CLW, CLT, CLW2, CLI, CLWB, CLVISW, CLIT,
            CLIW, CNTD, CAB, XCP2, XCG2, XCPB, XCPT, XCPW, XCPW2, XCG, XCPTV,
            XLAMT4
    2
     COMMON LLKK, ISHPW, ISWPT, ISWPW2, TAFBW, IAFBT, IAFBW2, IL, LLLL, IJ, J,
            II, NBODY, IZZY, ICSC, INOSE, NM, NMLK, IDT, IM, IAL, ISWP1, IAFB
     COMMON XLAMW, XLAMT, XLAMWZ, XMACW, XMACT, XMACWZ, CLAMW, CLAMT, CLAMWZ,
            EW, BT, BW2, CROOTW, CROOTT, CROOW2, SW, ST, SW2, XWING, XTAIL, XWING2
    1
            , XL, D, D1, XLN, AREA, XPEF, SSUBS, XLOB, ZF, ART, ARW, ARW2, XLNOSE
    2
     COMMON COLAM, BCOLAM, CROOT, B1, CLAL1, XLAM1, BAR, RATIO, XKTB, XKBT,
            XKWB,XKBM,XBCRBM,XKWBM,XKWBT,XKWBM2,XKBWM,XKBWT,XKBWW2,
            XCPBW, XCPBT, XCPRW2, XCPWB, XCPTB, XCPWB2, XKWBI, ODC, ODCW, ODCT,
    2
            ODCW2, CLALW, CLALT, CLALW2, REFT, BETA, AL, TONST, HONST, HT, XKTBI,
    3
            VXM, VXMR1, DELTA, XKCRWB, XBCRNB, XMAC, XLAMW4, XLAM24, XLAM2,
            XLAM4, TOVC, TOVCT, TOVCW2, TOVCW, EXS, STIOT, SWICT, SW2TOT, RE,
    5
            CD8, CD8w, CD8T, CD8B, CD8W2, CL8w, CLWB2, CLBW2, CLTB, CL8T, CLTD,
    6
            CLTOB, CLBOT, CLVIST, CLVIW2, CMB, CD8WBT
     CAMMAN DCDASW, DCDAST, DCDASP, DCDAW, DCDAT, DCDAW2
     CAMMON CDALZ
     XKWB=[2./3.14159]*[[1.+D**4/B1**4]*[.5*ATAN[.5*[B1/D*D/B1]]+3.1415
    19/4.J.[D**2/B1**2]*[[B1/D+D/B1]+2.*ATAN[D/B1]]]/[1.+D/B1]**2
926 XKTB1=[[3.14159]**2*D**2*[R1/D+1.]**2]/[4.*B1**2]+[3.14159*D**2*[B
    11**2/D**2+1.]**2/[B1**2*[B1/D=1.]**2]]*ARSIN[[B1**2/D**2*1.]/[B1**
    22/0**2+1.]]
     XK | B2=2.*3.14159*D*[B1/D+1.]/[B1*[B1/D*1.]]*[[B1**2/D**2+1.]**2/[[
    181**2/D**2]*[81/D*1.]**2]]*[ARSIN[[81**2/D**2=1.]/[81**2/D**2+1.]]
    21**2
     XKTB3=[4.*D*[B1/D+1.]/[B1*[B1/D+1.]]]*ARSIN[[B1**2/D**2=1.]/[B1**2
    1/D**2+1.]] = [8./[B1/D=1.]**?]*AL@G[[B1**2/D**2+1.]/[2.*B1/D]]
     XKTB=[1./[3.14159]**2]*[XKTB1*XKTB2*XKTB3]
     IF [ICSC=1] 970,970,971
970 IF [LLKK] 972,972,973
 972 XKWBI=0/81+1+
     OXKTBI=XKTB
     GB TB 973
 974 IF [LLKK=1] 973,973,972
973 BAREF#BAR*[1++XLAM1]*[[1*/[BETA*C6LAM]]+1+]
     IF [PARFF-4.] 928,928,929
928 XKBW=[1.+D/B1] +*2-XKWB
     GB T9 1000
 929 IF [[AFB] 9291,9292,9291
9291 IF [BCBLAM#1.] 932,931,931
931 XKBW1=[ECOLAM/[1.+BCOLAM]]+[[[BCOLAM+1.]+[1./RATIO]+BCOLAM]/BCOLA
    1MJ**?J*ARC8S[[1·+四·+BC8LAM]*[14/RATI8]]/[BC8LAM+[BC9LAM+1.]*[1·/
    CELEBITARS
     XKBWZ=[SORT[BCGLAM**2-1.]/[BCGLAM+1.]]*[SORT[1.+2.*BETA*D/CR80]]*
    11.] = [SGRT[BC0LAM**2=1.]/BC0LAM] * [BETA*D/CR80T] **2*AL8G[[1.+CR80T/[
    29ETA*D]]+SQRT[[1.+CR00*/[BETA*D]]-1.]] #[BC0LAM/[1.+BC0LAM]] *ARC0S
    3[1*/BC@LAM]
     XKBW#[8.*BC0LAM/[3.14159*SQRT[BC0LAM**2*1.]*[1.+XLAM1]*[BETA*D/
    1CROOT] * [81/D-1.] * [HETA *CLAL 1]]] * [XKBW1+XKBW2]
     G8 T8 1000
```

```
932 XKBW1=[[BC6LAM+[1.+BC6LAM]+BETA+D/CR66T]/BC6LAM]++1.5+[[BC6LAM+[1.
    1+BCOLAMJ *BETA *D/CROOT] /BCOLAMJ *** 5*2*
     xkBW2=[[[1.+BCOLAM] *BETA*D/CROOT]/BCOLAM] **2*0.5*[ALOG[1.+SQRT[BCO
    1LAM/[BCOLAM+[1.+BCOLAM] *BETA*D/CRORT]]] *ALOG[1.+SQRT[BCOLAM/[BCOLA
    2M+[1.+BCOLAM] #BETA*D/CROOT]]]]
     XK8W=[16+*[BC0LAM/[1+BC0LAM]] +42/[3+14189+[1+*XLAM1]+[BETA+D/
    1 CREUT ] * [B1/D-1.] * [BETA * CLAL 1] ] * [XKBW1 * XKBW2]
     Ge Te 1000
9292 [F[BC0LAM-1.] 9295,9294,9294
9294 [F[RATIO+1+] 9293,9311,9311
9293 RATIO=1.
     D=CRAOT/BETA
9311 XK31=[1.+COLAM*BETA*RATIO] **2*ARCOS[[BCOLAM*RATIO]/[1.+COLAM*BETA
     XKB2=BC@LAM**2*RATI@**2*ARC@S[1./BC@LAM]*BC@LAM*RATI@**2*SQRT[BC@L
    1AM**2-1.]*ARSIN[1./RATIO]
     XKB3=SGRT[BC0LAM**2*1.]*ALPG[RATIO+SGRT[RATIO**2*1.]]
     XK3%=[[8./[3.14159*SGRT[BC9LAM**2=1.]*BETA*CLAL1*[XLAM1+1.]*[B1/D1
    1-1-]]] *[1./RAT[9]] *[XK91-XKB2-XKB3]
     GA TO 1000
9295 IF [RATIO-1.] 9296,9312,9312
9296 RATI9=1.
     r=CROOT/BFTA
9312 XK81 = [1.+C6LAM*BETA*RATI6] & SQRT [[RATIO*1,] * [C6LAM*BETA*RATI6+1.]]
     XKB2=RATIO++2+[BCOLAM]++1.5+BCOLAM+RATIO++2+[BCOLAM+1.]+[ATAN[SQRT
    1[1./BCBLAM]] WATAN[SQRT[[RAYIBW1.]/[CBLAM*BETA*RATIB+1.]]]]
     YKB3=[[BC0LAM+1+]/SQRT[BC0LAM]]+0+5+[AL0G[1++SQRT[BC0LAM+[RAT]0+1+
    1]/[COLAM#BETA#RATIO+1.]]] +ALOG[1.=SQRT[BCOLAM#[RATIO=1.]/[COLAM#
    PAFTA*RATIA+1.]]]
     XKBW=[[16.*SQRT[BC8LAM]*[1./RAT[8]/[BETA*CLAL1*[XLAM1+1.]*[B1/D1
    1-1-] +3-14159 + [BCOLAM+1-]]]] + [XKB1-XKB2-XKB3]
1000 XKBT=XKWB=XKTB
     D = D1
     [F[VXM+1.0] 2000,2000,2010
2000 IF [ISWP1-1 ] 2020,2020,2030
2020 IF [BAR-2:0] 2040,2050,2050
2040 XBCRWB=0+35=XLAM1+[0+35+17.885=SQRT[328+8782+[BAR+3+] ##2]]
     G80S BT 68
2050 XBCRWB#0+35=0+1*XLAM1
     080S BT BD
2030 IF[BAR#2.0] 2060,2070,2070
2060 XCR1=SORT[2029.5+[BAR=3.]*#2]
     XBCRWB=[[-44.5+XCR1]=XLAM1. [-44.5+XCR1+17.885.SQRT[328.8782-[BAR
    1-3-]**2]]]
     G8 T8 2110
2070 XBCRWB=0.55-0.3*XLAM1
     ca 78-2110
2080 TF[BAR=4+0] 2090,2100,2100
2C9C xecrew=0.25=XLAM1+[32.125=9GRT[1032.02+[BAR=4.]+*2]]+[1.=XLAM1]+
    1AL8G[1.04+0.1*D/B1]*[-7.5+SQRT[72.25+[BAR+4.0]**2]]
     GB TB 2400
2100 xBCR8w#0+25+[[1+-XLAM1]*AL8G[1+04+0.1*D/B1]]
     68 T9 2400
```

```
211C IF (BAR-4.0) 2120,2130,2130
212C XBCRBW#0.25+[1.#2.#XLAM1]#[32.125-SQRT[1032.02-[BAR#4.]**2]]+
    1[1.*XLAM1]*AL8G[1.12+0.3*D/B1]*[*7.5+SQRT[72.25*[BAR-4.]**2]]
     GB TB 2400
213C XBCRBW=0.25+[1.=XLAM1] *ALBG[1.12+0.3+D/B1]
     GB TB 2400
2C1C IF [ISWPi=1
                 J 2140,2140,2150
214C IF [BAR+3+0] (2160, 2170, 2170
216C XBCRWB== [9.235+25.#[1.=XLAM1]]+SQRT[[9.71+25.*[1.-XLAM1]]**2=
    1[BAR+3.]**2]
     GO TO 2200
217C XBCRWB=0.005*BAR+0.46
     GB TB 2200
215C | F[BAR-3.] 218C, 2190, 2190
218C XBCRWB=0+675-XLAM1+[0+675+9+235-SQRT[94+1-[BAR-3+] **2]]
     GB TB 2300
219C XECRWB=C+005*BAR+0+46+0+2*[1++XLAM1]
     GB TB 2300
220C BARLAM#BAR*[1.=XLAM1] *[1.+/1./BCOLAM]]
     IFIBARLAM-4.01 2210,2210,2220
     0455.0455.055. [0.58#AR4]
2230 QXBMID1 = ALOG[1.32 = 0.32*XLAM1]
2235 XBMID2=4++[XBMID1**2]+[[0.5+0.5139*[D/B1]*[1.17+XLAM1]*[1./[0.331
    1**[D/B1]]] **2]
     XBMID3=2.*[[XBMID1]+[0.5+0.5139*[D/B1]*[1.17+XLAM1]*[1./[0.331
    1 * * [D/B1]]]]
     xBMID#XBMID2/XaMID3
     YCMID=4.+[XBMID1-XBMID]**2
     XBCRBW=SGRT[XCMID+[[BAR+2.]**2]]+XBMID
     GB TB 2400
224C XBCRBW#C+5+0+25695*[D/B1]*/1+/[0+331**[D/B1]]]*BAR*[1+17+XLAM1]
     GB TB 2400
2220 [F[1AFB] 2250,2250,2260
2250 IF[RATIO-1.0] 2280,2280,2270
228C XBCRPW=0+67
     GB TB 2400
227C XBCRBW==2.32+SGRT[8.9401+[[1./RATIB]=1.] **2]
     GB TB 2400
226C XBCRBW=[0:429/RATI0]+0.5
     GB TB 2400
2300 BARLAM=BAR*[1.-XLAM1]*[1.+[1./BC8LAM]]
     IF [BARLAM=4.0] 2310,2310,2220
2310 IF [BAR-2.0] 2320,2240,2240
2320 XBMID1=ALBG[1.65+0.65*XLAM]]
     GB TB 2235
2400 D=D1
     ARAT=BAR/BETA
     [F[ARAT=3.0] 20,20,21
  21 ARAT = 3.0
  2C PDC=2.*[1.+XLAM1] **1.6*EXP **.4*ARAT]
     IF [ARAT=1.0] 22,23,23
  23 9DC=8DC=0.25*[ARAT=1.0]
  22 CANTINUE
      RETURN
      FND
```

TABLE 2

INPUT NOMENCLATURE*

AREA arbitrary reference area, ft²

BT total tip-to-tip tail span including the missile body**

BW total tip-to-tip wing span including the missile body

BW2 total tip-to-tip wing two span including the missile body

CLAMT leading edge sweep angle of the tail***

CLAMW leading edge sweep angle of the wing

CLAMW2 leading edge sweep angle of wing two

CROOTT tail root chord

CROOTW wing root chord-

CROOTW2 wing two root chord

D body diameter

HT altitude in feet

IAFBT afterbody constant for the tail

0 - no afterbody following the tail
1 - afterbody following the tail

IAFBW afterbody constant for the wing

0 - no afterbody following the wing1 - afterbody following the wing

IAFEW2 afterbody constant for wing two

0 - no afterbody following wing two1 - afterbody following wing two

IAL number of angles of attack

ICSC control surface constant

1 - tail control
2 - wing control
3 - canard control

IDT number of control surface deflection angles (must beat least one; if there is no control surface, IDT = 1, DELTA = 0.0)

IM number of Mach numbers

TABLE 2 (continued)

INOSE	nose constant 1 - blunted ogive or cone 2 - pointed ogive 3 - pointed cone
ISWPT	<pre>sweep constant of tail 1 - unswept mid-chord 2 - unswept trailing edge</pre>
ISWPW	<pre>sweep constant of wing l - unswept mid-chord 2 - unswept trailing edge</pre>
ISWPW2	<pre>sweep constant of wing two l = unswept mid-chord 2 = unswept trailing edge</pre>
NBODY	number of configurations being run (a configuration is one complete data deck)
ST	exposed planform area of one pair of tail panels
SW	exposed planform area of one pair of wing panels
SW2	exposed planform area of one pair of wing two panels
TOVCT	thickness-to-chord ratio of the tail
TOVCW	thickness-to-chord ratio of the wing
TOVCW2	thickness-to-chord ratio of wing two
XAL	missile angle of attack (degrees)
XCG	missile center of gravity location as measured from the nose
XDT	control surface deflection angle (degrees)
XL,	missile length
XLAMT	tip-to-root-chord ratio of the tail
XLAMW	tip-to-root-chord ratio of the wing
X LAMW2	tip-to-root-chord ratio or wing two
XLNOSE	length of the nose

TABLE 2 (continued)

XMACT	mean geometric chord of the tail
XMACW	mean geometric chord of the wing
XMACW2	mean geometric chord of wing two
XREF	arbitrary reference length
XTAIL	distance from the nose to the leading edge of the tail root chord
MXVX	missile flight Mach number
XWING	distance from the nose to the leading edge of the wing root chord
XWING2	distance from the nose to the leading edge of wing two root chord

^{*} The control surface is defined as the tail regardless of the mode of control, and the fixed surface(s) is (are) always defined as the wing(s). See Figure 1.

^{**} All linear dimensions are in feet.

^{***}All angular dimensions are in degrees.

TABLE 3
PROGRAM INPUT FORMAT

٠.										
1	Run Identification	Configurat	ion Title	and/or Num	ber (1st 6	0 columns)			
2	Control Constants	icsc (15)	INOSE (15)	IDT (15)	IM (15)	IAL (15)	NBODY (15)	-		•
3	Wing (1997) Inputs	ISWPW	IAFBW (15)	XLAMW (F10.5)	CLAMW (Flo.5)	BW (F10.5)	CROOTW (F10.5)	SW (F10.5)	XMACW (Flo.5)	XWING (Flo.5)
4	Wing 2 Inputs	ISWPW2	IAFBW2 (15)	XLAMW2 (F10.5)	CLAMW2 (F10.5)	BW2 (F10.5)	CROOW2 (F10,5)	SW2 (F10.5)	XMACW2 (F10.5)	XWING2 (Flo.5)
5	Tail Inputs	ISWPWT (15)	IAFBT (15)	XLAMT (F10.5)	CLAMT (F10.5)	BT (F10.5)	CROOTT (F10.5)	ST (F10.5)	XMACT (F10.5)	XTAIL (F10.5)
6	Miscellaneous Data	HT (F10.3)	D (F10.3)	X L (F10.3)	XLNOSE (Fl0.3)	XCG (Fl0.3)	AREA (F10.3)	XREF (F10.3)		
7	Miscellaneous Data	TOVCW (F10.3)	TOVCW2 (F10.3)	TOVCT (F10.3)						
8	Control Surface Deflection Angles	XDT Any number of deflection angles up to 16 may be input. (F5.1)								
9	Missile Flight Mach Numbers	XVXM Any number of Mach numbers up to 16 may be input. (F5.1)								
10	Missile Angles of Attack	XAL Any number of angles of attack up to 48 may be input. (F5.1)								
11	Missile Angles of Attack	If this	If this card is not required, leave out of data deck.							
12	Missile Angles of Attack	If this card is not required, leave out of data deck.								

TABLE 4

OUTPUT NOMENCLATURE

AL missile angle of attack, degrees

CA total axial force coefficient

CDTOT total missile drag coefficient

CLALT $C_{L_{\alpha}}$ of the tail

CLALW C, of the wing

T' or one ware

CLALW2 CLAC of wing two

CLB body lift coefficient

CLI lift loss due to downwash

CLTOT total missile lift coefficient

CLTT tail lift coefficient

CLWT wing lift coefficient

CM total pitching moment coefficient about the missile center of

gravity

CN total normal force coefficient

CNB body normal force coefficient

CNT tail normal force coefficient

CNTD tail normal force coefficient due to control surface deflec-

tion

CNW wing normal force coefficient

DELTA control surface deflection angle, degrees

VXM missile flight Mach number

XCPB body center of pressure location as measured from the nose,

feet

XCPT tail center of pressure location as measured from the nose,

feet

CMB = CNB(XCG-XCPB)

TABLE 4 (continued)

XCPW wing center of pressure location as measured from the nose, feet

XCP2 total missile center of pressure location as measured from the nose, feet

XCP XC6 WXCP2

INITIAL DISTRIBUTION

Copy

- 1 AIR 3033
- 1 AIR 320
- 1 AIR 360
- 1 AIR 5301
- 4 AIR 604
- 1 NWC 3013
- 1 NWC 30101
- 1 NWC 406
- 1 NWC 4063
- 1 NWC 4506
- 12 DDC
- 1 William Millard
 Division 9324
 Sandia Laboratories
 Albuquerque, New Mexico 87115
- 1 Alvin Spector
 Naval Air Development Center
 Code AMFC=2
 Warminster, Pennsylvania 18974
- 1 John Fiddler
 Martin-Marietta Corp.
 Orlando Division
 Sand Lake Rd.
 Mail Pt. 326
 Orlando, Florida 32801
- David N. Bixler
 Missile Dynamics Division
 Code 323
 Naval Ordnance Laboratory
 White Oak, Maryland 20910

- 1 R. A. Deep U.S. Army Missile Command Redstone Arsenal, Alabama 35809
- 1 Girard Rapp
 Raytheon Company
 Box 550
 Bedford, Massachussettes 01730
- 1 Glen L. Martin % Mr. Charles J. Dragowitz Grumman Aerospace Corp. South Oyster Bay Road Bethpage, New York 11714
- 1 Terry Martin NAVAIR 530142B
- 1 Frank J. Kranz
 Hughes Aircraft
 Missile Systems Division
 Mail Station X-16
 Canoga Park, California 91304
- 1 John G. Gebhard
 Fluid Mechanics Department
 Aerospace Corporation
 P.O. Box 1308
 San Bernadino, California 92402
- 1 Barry Clark
 GBJ
 Naval Weapons Laboratory
 Dahlgren, Virginia
- 1 Wallace Sawyer
 Mail Stop 413
 Langley Research Center
 Hampton, Virginia 23365

DOCUMENT	CONTROL	DATA.	R &	D

(Security classification of title, body of abstract and indexing annotation must be e	entered when the overall report is classified)
ATING ACTIVITY (Corporate author)	28. REPORT SECURITY CLASSIFICATION

Naval Ship Research and Development Center

UNCLASSIFIED

25. GROUP

A METHOD FOR PREDICTING THE STATIC AERODYNAMIC CHARACTERISTICS OF TYPICAL MISSILE CONFIGURATIONS FOR ANGLES OF ATTACK TO 180 DEGREES

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

Research and Development Report

5. AUTHOR(S) (First name, middle initial, last name)

Bernard F. Saffell, Jr., Millard L. Howard, and Eugene N. Brooks, Jr.

6. REPORT DATE	78. TOTAL NO. OF PAGES	76. NO. OF REFS
March 1971	99	14
8a. CONTRACT OR GRANT NO.	9a, ORIGINATOR'S REPORT NU	JMBER(S)
b. PROJECT NO. WW 16-25	Aero Report 1168	
c. Task 10501	9b. OTHER REPORT NO(S) (Any this report) Report 3645	other numbers that may be assigned
d. NSRDC 1-651-106-01	Webort 3042	

Approved for public release; distribution unlimited

	· · · · · · · · · · · · · · · · · · ·
11. SUPPLEMENTARY NOTES	12. SPONSORING MILITARY ACTIVITY
	Commander, Naval Air Systems Command Navy Department
	Washington, D.C. 20360
13 ABSTRACT	

A method for predicting the static, longitudinal aerodynamic characteristics of typical missile configurations at zero roll angle (i.e., in a plus configuration) has been developed and programmed for use on the IBM 7090 digital computer. It can be applied throughout the subsonic, transonic, and supersonic speed regimes to slender bodies of revolution or to nose-cylinder body combinations with low aspectratio lifting surfaces. The aerodynamic characteristics can be computed for missile configurations operating at angles of attack up to 180 degrees. The effect of control surface deflections for all modes of aerodynamic control are taken into account by this method. The method is based on well-known linear, nonlinear crossflow and slender body theories with empirical modifications to provide the high angle of attack capability. Comparisons of the theory with experimental data are presented to demonstrate the accuracy of the method.

DD FORM 1473 (PAGE 1)

UNCLASSIFIED Security Classification

S/N 0101-807-6801

Security Classification	LIN	· · · · · · · · · · · · · · · · · · ·	LIN	K B	LINI	
14. KEY WORDS	ROLE	K A	ROLE	K B	ROLE	W T
Aerodynamic Prediction Computer Program	1201	le.	Li	Jay 1	- Holy to had	
Drag High Angle of Attack Lift Longitudinal Aerodynamics Missile Aerodynamics	wo	dy	pro	believe (ļ	
Longitudinal Aerodynamics Missile Aerodynamics Amuselle		Helical	را مساوس	polinkie kui		
Pitching Moment				,		
Pitching Moment Stability and Control Static Aerodynamics			CA	Mr.	Com	March St. March
Calcu	Lr.	Le	· t			
				•		